

Machine Learning on FPGA

Sergey Furletov

Jefferson Lab

Joint GlueX-EIC-PANDA Machine Learning Workshop

25 Sep 2020

9/25/20

Sergey Furletov

Outline

- Motivation
 - Examples from HEP experiments at LHC
 - EIC experiment
- ANN in FPGA (*)
- ML in FPGA for physicists
 - o Experimental setup
 - Offline PID analysis with ML (root / TMVA)
 - Moving on to FPGA
 - Choosing FPGA for ML
 - Run ML on FPGA
- Optimization ML in FPGA with hls4ml package
- Global PID with multiple PID detectors
- Hardware solutions
- Outlook
- Live demonstration of the workflow (optional)

(*) Field Programmable Gate Array

Motivation

- With increase of luminosity for accelerator colliders as well as a granularity of detectors for particle physics, more challenges fall on the readout system and data transfer from detector front-end to computer farm and long term storage.
- At the LHC, data rates at the CMS and ATLAS, are of the order of terabytes per second
- Modern (triggered) data acquisition systems (LHC, KEK, Fair) employ several stages for data reduction.
- Concepts of trigger-less readout and data streaming will produce large data volumes being read from the detectors.
- From a resource standpoint, it makes much more sense to perform data pre-processing and reduction at early stages of data streaming. Would allow to use information-rich data sets for event selection.
- Our project mostly inspired by work carried out at CERN, and progress in ML application on FPGA

celerator Facility

Rates example from CMS

- CMS bandwidth: Phase-2 ~50 Tb/s (1.8TB/s in Phase-1)
- The task of the real-time processing is to filter events to reduce data rates to manageable levels for offline processing.
- Level-1 typically uses custom hardware with ASICs or FPGAs (decision ~4 μs)
- The second stage of triggering, High Level Trigger (HLT), uses commercial CPUs to process the filtered data in software. (decision ~100 000 μs)

After trigger, 99.99975% of events are gone forever!

Rejection is mostly defined by cross section of interesting physics processes and trigger efficiency

9/25/20

Sergey Furletov

Motivation ML on FPGA

- The growing computational power of modern FPGA boards allows us to add more sophisticated algorithms for real time data processing.
- Many tasks could be solved using modern Machine Learning (ML) algorithms which are naturally suited for FPGA architectures.

Level 1 works with Regional and sub-detector Trigger primitives

Using ML on FPGA many tasks from Level 2 and/or Level 3 can be performed at Level 1

9/25/20

Example from LHCb Run2

Implemented

for LHC Run 2

6

LHCb event filter farm

- Event filter farm
 - 1600 nodes, up to 50000 concurrent processes
 - 12 PB disk storage
- High Level Trigger split in two stages:
 - HLT1 filters L0 output in real-time (partial event reconstruction)
 - Output buffered to local disks
 - HLT2 processes events in and out of fill (full event reconstruction)
- Optimal use of farm resources

6

ML on Xilinx FPGA

- While the large numerical processing capability of GPUs is attractive, these technologies are optimized for high throughput, not low latency.
- FPGA-based trigger and data acquisition systems have extremely low, sub-microsecond latency requirements that are unique to particle physics.
- Machine learning methods are widely used and have proven to be very powerful in particle physics.
- However, exploration of the use of such techniques in low-latency FPGA hardware has only just begun.

EIC rates estimation

- EIC moves to the concept of streaming readout.
- Need a large computer farm to handle streaming data.
- In terms of resources, it makes sense to perform data pre-processing and reduction at the early stages of data streaming.

Signal data rate -> DAQ strategy

Note sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/ , Simulation: https://eic-detector.github.io/

- ► What we want to record: total collision signal ~ 100 Gbps @ 10³⁴ cm⁻² s⁻¹
 - Assumption: sPHENIX data format, 100% noise
 - Less than sPHENIX peak disk rate. 10⁻⁴ comparing to LHC collision
- Therefore, we could choose to stream out all EIC collisions data
- In addition, DAQ may need to filter out excessive beam background and electronics noise, if they become dominant.
 - Very different from LHC, where it is necessary to filter out uninteresting p+p collisions (CMS/ATLAS/LHCb) or highly compress collision data (ALICE)
 - Such filtering does not require real-time event reconstruction

Belle II , 8 megapixels PXD produces ~200 Gbps @ 30 kHz trigger rate. (beam background, noise and synchrotron)

9/25/20

Neural network and FPGA

9

9/25/20

Sergey Furletov

10

FPGA structure

Sergey Furletov

11

Image from: https://www.embeddedrelated.com/showarticle/195.php

9/25/20

- Fist FPGA have only programmable gates and routers: Field Programmable Gate Array.
- It can perform logical operation in parallel using LUTs and FFs.
- There are problems with the math operation required by the neural network.

Modern FPGA

- Modern FPGAs have DSP slices specialized hardware blocks placed between gateways and routers that perform mathematical calculations.
- The number of DSP slices can be up to 6000-12000 per chip.
- In addition, they often have ARM cores implemented using non-programmable gates, or "soft processor core" MicroBlaze.

Modern FPGA: lots of hard, not-field-programmable gates

Image from: https://www.embeddedrelated.com/showarticle/195.php

Experimental setup and workflow

13

Beam setup at JLab Hall-D

• Tests were carried out using electrons with an energy of 3-6 GeV, produced in the converter of a pair spectrometer at the upstream of GlueX detector.

GEM-TRD prototype

- A test module was built at the University of Virginia
- The prototype of GEMTRD/T module has a size of 10 cm × 10 cm with a corresponding to a total of 512 channels for X/Y coordinates.
- The readout is based on flash ADC system developed at JLAB (fADC125) @125 MHz sampling.
- GEM-TRD provides e/hadron separation and tracking

GEM-TRD can work as mini TPC, providing 3D track segments

Sergey Furletov

16

NN input parameters

par_pi_1

9/25/20

The last histogram represents the first time bin after entrance window with the most soft TR photons spectrum.

par_pi_2

Sergey Furletov

ML for GEMTRD offline analysis

• For data analysis we used a neural network library provided by root /TMVA package : MultiLayerPerceptron (MLP)

- All data was divided into 2 samples: training and test samples
- Top right plot shows neural network output for single module:
 - Red electrons with radiator
 - Blue electrons without radiator

Moving forward

- Offline analysis using ML looks promising.
- Can it be done in real time ?
- Here are some of the possible solutions :
 - Computer farm.
 - CPU + GPU
 - CPU + FPGA
 - FPGA only
- Steps for beginners to implement an FPGA solution:
 - Select FPGA for application in ML
 - Export an offline trained neural network (NN) from root to C++ file.
 - Convert logical topology of NN coded in C++ to RTL structure of FPGA in VHDL or Verilog.
 - Optimize the NN for application in FPGA.
 - Create an I/O interface and configure FPGA.
 - Perform the test with hardware.

FPGA market

Since Intel acquired Altera, Xilinx was left as the only major FPGA company in the market. Xilinx has ~50% market share while Altera (Intel) has ~37% and Lattice Semiconductor has a 10% market share.

9/25/20

Xilinx Zynq FPGA family

Xilinx SoC, MPSoC and RFSoC Feature Summary

PROCESSING SYSTEM	Zynq-7000 SoC	Zynq UltraScale+ MPSoC	Zynq UltraScale+ RFSoC	
Application Processing Unit	Single/Dual-core Arm Cortex-A9 MPCore™ up to 1GHz	Dual/Quad-core Arm Cortex-A53 MPCore up to 1.5GHz	Quad-core Arm Cortex-A53 MPCore up to 1.33GHz	
Real-Time Processing Unit	-	Dual-core Arm Cortex-R5 MPCore up to 600MHz	Dual-core Arm Cortex-R5 MPCore up to 533MHz	
Multimedia Processing	-	GPU Arm Mali™-400 MP2 up to 667MHz, Video Codec supporting H.264-H.265	-	
Dynamic Memory Interface	DDR3, DDR3L, DDR2, LPDDR2	DDR4, LPDDR4, DDR3, DDR3L, LPDDR3	DDR4, LPDDR4, DDR3, DDR3L, LPDDR3	
High-Speed Peripherals	USB 2.0, Gigabit Ethernet, SD/SDIO	PCIe [®] Gen2, USB3.0, SATA 3.1, DisplayPort, Gigabit Ethernet, SD/SDIO	PCIe [®] Gen2, USB3.0, SATA 3.1, DisplayPort, Gigabit Ethernet, SD/SDIO	
Security	RSA, AES, and SHA, Arm TrustZone $^{\textcircled{8}}$	RSA, AES, and SHA, Arm TrustZone	RSA, AES, SHA, Arm TrustZone	
Max I/O Pins	128	214	214	

PROGRAMMABLE LOGIC	Zynq-7000 SoC	Zynq UltraScale+ MPSoC	Zynq UltraScale+ RFSoC	
Max Logic Cells / System Logic Cells (K)	444	1,143	930	
Max Memory (Mb)	26.5	70.6	60.5	
Max DSP Slices	2,020	3,528	4,272	
33G Transceivers	-	-	16	
Max I/O Pins	250	668	408	

Xilinx UltraScale+ family

Xilinx Ultrascale+ has the most DSP on a chip.

But it lacks a real processor on a chip.

Product Tables and Product Selection Guides

Cost-Optimized Portfolio

Spartan-7	Spartan-6
Artix-7	Zynq-7000

7 Series Spartan-7 Artix-7 Kintex-7 Virtex-7

UltraScale

Kintex UltraScale Virtex UltraScale

Kintex UltraScale+ Virtex UltraScale+

	Kintex UltraScale+	Virtex UltraScale+
Max System Logic Cells (K)	1,143	3,780
Max Memory (Mb)	70.5	455
Max DSP Slices	3,528	12,288
Max Transceiver Speed (Gb/s)	32.75	32.75
Max I/O Pins	572	832

Xilinx Virtex[®] UltraScale+™

- At an early stage in this project, as hardware to test ML algorithms on FPGA, we use a standard Xilinx evaluation boards rather than developing a customized FPGA board. These boards have functions and interfaces sufficient for proof of principle of ML-FPGA.
- The Xilinx evaluation board includes the Xilinx XCVU9P and 6,840 DSP slices. Each includes a hardwired optimized multiply unit and collectively offers a peak theoretical performance in excess of 1 Tera multiplications per second.
- Second, the internal organization can be optimized to the specific computational problem. The internal data processing architecture can support deep computational pipelines offering high throughputs.
- Third, the FPGA supports high speed I/O interfaces including Ethernet and 180 high speed transceivers that can operate in excess of 30 Gbps.
 Featuring the Virtex® UltraScale+" XCVU9P-L2FLGA2104E FPGA

Xilinx Virtex[®] UltraScale+™

Evaluation board XCVU9P includes software license (node locked & device-locked) with 1 year of updates.

Xilinx design software

Vivado Design Suite - HLx Editions

	Vivado Design Suite - HLx Edition Features	Vivado HL Design Edition	Vivado HL System Edition	Vivado Lab Edition	Vivado HL WebPACK Edition (Device Limited)	Free 30-day Evaluation		
	Accelerating Implementation	Accelerating Implementation						
	Synthesis and Place and Route	•	•		•	•		
	Dynamic Function eXchange	•	•		•	•		
	Accelerating Verification							
	Vivado Simulator	•	•		•	•		
	Vivado Device Programmer	•	•	•	•	•		
	Vivado Logic Analyzer	•	•	•	•	•		
	Vivado Serial I/O Analyzer	•	•	•	•	•		
	Debug IP (ILA/VIO/IBERT)	•	•		•	•		
	Accelerating High Level Desi	gn						
	Vivado High-Level Synthesis	•	•		•	•		
	Vivado IP Integrator	•	•		•	•		
Buy Online From Xilinx	System Generator for DSP	*	•		*	•		
Software Only			1	1	Î			
 Buy Node-Locked License Price: \$2995 Lead Time: Immediate Buy Floating License Price: \$3595 Lead Time: Immediate 			WebP and de	ACK is fr oes not	ee, but device li support XCVU9P	imited,		
Node-Locked vs Floating?								

9/25/20

Xilinx High-Level Synthesis

The Xilinx Vivado HLS (High-Level Synthesis) tool provides a higher level of abstraction for the user by synthesizing functions written in C,C++ into IP blocks, by generating the appropriate ,low-level, VHDL and Verilog code. Then those blocks can be integrated into a real hardware system.

		Vivado HLS 2019.1 - trd_ann (/raid1/home/furletov/VIVADO/work_hls/GemTRD/trd_an	nn)	$\odot \odot \odot$	
He Edit Project Solution Winds	оw нер і 🖻 і 🖪 і 🕋 🏟 🌆	🍓 : 🚔 📮 : ▶ ▾ ☑ 🖶 : 🗊 ▾ 🗮 🕾 : & : ©	🎄 Debug 🔊 Synthesi	ස් Analysis	
Explorer 🕱		f] Synthesis(solution1)(trdann_csynth.rpt) ☆ 🗈 trd_ann.cxx	- Directive		
<pre> * Estrd_ann } @Includes * Esurce &trd_ann.cxx &trd_ann.h * Image Teat Bench * Constraints & constraint</pre>		General Information Date: Wed Mar 11 18:26:42 2020 Version: 2019.1 (Build 2552052 on Fri May 24 15:28:33 MDT 2019) Project: trd_ann Solution: solution1 Project: trd_ann Solution: solution1 Project: trd_ann Solution: solution1 Project: xcuugp-flga2104-21-e Performance Estimates	Image: Constant of Cons	Control of the control of the control of the control of the network used for V Control of the network used for V Control of the control of the control of the network used for V Control of the	C/C++ code e trained ork is as input ivado_HLS.
		a.			

Xilinx HLS: C++ to Verilog

Xilinx Vivado

Vivado Design Suite is a software suite produced by Xilinx for synthesis and analysis of HDL designs.

9/25/20

ML FPGA Core for TRD

• Using HLS significantly decreases development time. (at the cost of lower efficiency of use of FPGA resources)

9/25/20

Vivado implementation report

Performance Estimates

Timing (ns)

Latency (clock cycles)

Initial latency estimation: From 60 ns to 1.5 μ s.

Summary

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	7	-	-	-
Expression	-	40	40	8082	-
FIFO	-	-	-	-	-
Instance	510	1415	142176	199915	-
Memory	-	-	-	-	-
Multiplexer	-	-	-	181	-
Register	-	-	2350	-	-
Total	510	1462	144566	208178	0
Available	4320	6840	2364480	1182240	960
Available SLR	1440	2280	788160	394080	320
Utilization (%)	11	21) 6	17	0
Utilization SLR (%)	35	64	18	52	0

						SLR2
:						
X0Y14	X1Y14	X2Y14	X3Y14	<u>X4Y14</u>	X5Y14	
X0Y13	X1Y13	X2Y13	X3Y13	X4Y13	X5Y13	
1						
X0Y12	X1Y12	X2Y12	X3Y12	X4Y12	X5Y12	
X0Y11	X1Y11	X2Y11	X3Y11	X4Y11	X5Y11	
	VIVIO	V2V10	X2X10	- W4X10	VEV10	
X0110	X1110	N2110	73110	N4110	A J I I O	SLRI
:						
X0Y9	X1Y9	X2Y9	X3Y9	X4Y9	X5Y9	
i Vovo	V1V0	V-1V-0	V9V0	MAV0	VEVO	
2010	7110	A210	7210	X410	×310	
:						
X0Y7	X1Y7	X2Y7	X3Y7	X4Y7	X5Y7	
X 0 Y6	X1Y6	X2Y6	X3Y6	X4Y6	X5Y6	
X015	XIY5	X215	X315	X415	X515	SLD
1		1	matrix data		1	OLINE
XCY4	1 1	x2Y4	W A	X4Y4	X5Y4	
<u>xr 73 -</u>	4 1	×	4 113	-×je, -(,	<u>x513</u>	
				Baue D'		
XC 12	N.	X2Y2	r	X41r ^{ar}	3572	t
		NH.				i.
YOY1			XBYL	MAYU	WSY1	
			1			
Xeyo	• <u>vi</u> ro	X2:0	X3Y0	Kein I	IX51D	

Sergey Furletov

Test ML FPGA

Test tools:

- 1. Vivado SDK
- 2. Petalinux

C++ code for test : XTrdann ann; // create an instance of ML core.

XTrdann ann;

int ret = XTrdann Initialize(&ann, 0); xil printf(" XTrdann Initialize =%d \n\r", ret); XTrdann_Start(&ann); xil printf(" XTrdann Started \n\r"); for (int i = 0; i < 8 ; i++) {</pre> for (int k=0; k<10; k++)</pre> params[k]=data[i][k]; out0=data[i][10]; ann_stat(&ann); int offset=0: int retw = XTrdann Write input r Words(&ann, offset, (u32*)¶ms[0], 10); xil_printf("Set Input ret=%d \n\r", retw); XTrdann Set index(&ann, 0); XTrdann Start(&ann); while (!XTrdann IsReady(&ann)) ann stat(&ann); ann stat(&ann); int h1=out0; int d1=(out0-h1)*1000; float *xout; // *xin0, *xin1, *xin2; u32 iout = XTrdann_Get_return(&ann); xout = (float*) &iout; int whole = *xout: int thousandths = (*xout - whole) * 1000; if (whole==0 && thousandths<0) xil printf("xout=-%d.%03d out0=%d.%03d\n\r", whole, -thousandths,h1,d1); else xil_printf("xout=+%d.%03d out0=%d.%03d\n\r", whole, thousandths,h1,d1); //u32 in0 = XTrdann_Get_in0(&ann); xin0 = (float*) &in0; int hin0 = *xin0; int din0=(*xin0-hin0)*1000; //u32 inl = XTrdann Get inl(&ann); xinl = (float*) &inl; int hinl = *xinl; int dinl=(*xinl-hinl)*1000; //u32 in2 = XTrdann_Get_in2(&ann); xin2 = (float*) &in2; int hin2 = *xin2; int din2=(*xin2-hin2)*1000; //xil printf(" XTrdann in0=%d.%03d", hin0,din0); //xil_printf(" inl=%d.%03d ",hinl,dinl); //xil printf(" in2=%d.%03d ",hin2,din2); xil_printf(" ev=%d out=%d.%03d out0=%d.%03d\n\r",i,whole,thousandths,h1,d1);

9/25/20

Sergey Furletov

}

hls4ml software

- **hls4ml** is a software package for creating HLS implementations of neural networks
- Supports common layer architectures and model software
- Highly customizable output for different latency and size needs
- Simple workflow to allow quick translation to HLS

https://fastmachinelearning.org/hls4ml/

Optimization with hls4ml package

 A package hls4ml is developed based on High-Level Synthesis (HLS) to build machine learning models in FPGAs.

Sergey Furletov

Jefferson Lab

son National Accelerator Facility

Project scope

- To demonstrate the operating principle of the ML FPGA, we propose to use the existing setup of the ongoing EIC detector R&D project (eRD22) "GEM based Transition radiation detector (TRD) and tracker".
- To test the "global PID" performance we plan to integrate the EIC calorimeter prototype (3x3 modules) into the ML-FPGA setup.
- Preprocessed data from both detectors including decision on the particle type will be transferred to another ML-FPGA board with neural network for global PID decision.
- Real beam testing is planned in Hall D, where there is already a test beam site that can be used for testing the prototype GEM-TRD, ECAL and, if possible, Modular RICH detectors: this is an important part of the project to evaluate a "global PID".
- For the GEM-TRD project we already use offline Machine Learning tools (JETNET, ROOTbased TMVA), and the results can be used for validation of the proposed implementation of FPGA-based neural networks.

Filter design proposal

Jefferson Lab

Sergey Furletov

ADC based DAQ for PANDA STT

Level 0 Open VPX Crate

ADC based DAQ for PANDA STT (one of approaches):

- 160 channels (shaping, sampling and processing) per payload slot, 14 payload slots+2 controllers;
- totally 2200 channels per crate;
- time sorted output data stream (arrival time, energy,...)

Jefferson Lab

al Accelerator Facility

3.5

Compute Node (PXD, Belle II)

- The pixel detector of Belle II with its ~ 8 million channels will deliver data at rate of 22 Gbytes/s for a trigger rate of 30 kHz
- A hardware platform capable of processing this amount of data is the ATCA based Compute Node. (Advanced Telecommunications Computing Architecture).
- A single ATCA crate can host up to 14 boards interconnected via a full mesh backplane.
- Each AMC board is equipped with 4 Xilinx Virtex-5 FX70T FPGA.

Sergey Furletov

Outlook

- An FPGA-based Neural Network application would offer online event preprocessing and allow for data reduction based on physics at the early stage of data processing.
- This can reduce the size of the high level trigger computer farm and data traffic.
- Open-source hls4ml software tool with Xilinx[®] Vivado[®] High Level Synthesis (HLS) accelerates machine learning neural network algorithm development.
- FPGA provides extremely low-latency neural-network inference on the order of 100 nanoseconds.
- The ultimate goal is to build a real-time event filter based on physics signatures.

Figure 2.1: Feynman diagrams of the Quark Parton Model, QCD-Compton and Boson Gluon Fusion processes in NC DIS.

Published in 2007 Measurement of multijet events at low \$x_{Bj}\$ and low \$Q^2\$ with the ZEUS detector at HERA T. Gosau

Sergey Furletov

 \mathbb{N}

Backup

Sergey Furletov

38

Xilinx Zynq 7000 architecture

Zynq-7000

Zynq-7000 devices are equipped with dual-core ARM Cortex-A9 processors integrated with 28nm Artix-7 or Kintex®-7 based programmable logic for excellent performance-per-watt and maximum design flexibility. With up to 6.6M logic cells and offered with transceivers ranging from 6.25Gb/s to 12.5Gb/s, Zynq-7000 devices enable highly differentiated designs for a wide range of embedded applications including multicamera drivers assistance systems and 4K2K Ultra-HDTV.

efferson Lab

National Accelerator Facility

Arty Z7 (Zynq-7000)

Xilinx Virtex[®] UltraScale+[™]

