
Cross-Validation & Prediction Error

Most commonly used method for estimating the prediction error
(generalization error) on new data is cross-validation.
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Split training data into K roughly equal-sized parts (e.g. K = 5). Learn
neural network on K − 1 training parts and predict the not seen testing
part. Perform this for k = 1, 2, . . . ,K and combine the K estimates of
prediction error (test error).
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Cross-Validation & Prediction Error (cont.)
Typical choices of K are 5 or 10. If training data set consists of N data
points and K = N, then one obtains the leave-one-out cross-validation
method.

# number of folds

folds <- 10

samps <- sample(rep(1:folds, length=n), n, replace=FALSE)

for (fold.iter in 1:folds) {

train <- dataset[samps!=fold.iter,] # fit the model

test <- dataset[samps==fold.iter,] # predict

# perform here neural network training on set train

# perform here neural network prediction on set test

}
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Bias-Variance Dilemma

Idea: decompose generalization error into the two terms
(bias,variance).

Let us consider our curve fitting problem again. Let h(x) be the true
(but unknown) function with continuous valued output with noise.

We want to estimate h(·) based on training data sets D each of size
N.

The natural way to measure the effectiveness of the estimator is to
use the mean-square deviation from the desired optimal.

Averaging over all training data sets D one gets the decomposition:

ED
[
{y(x,D) − h(x)}2

]

= {ED[y(x,D)] − h(x)}2︸ ︷︷ ︸
bias2

+ED
[
{y(x,D) − ED[y(x,D)]}2

]
︸ ︷︷ ︸

variance
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Bias-Variance Dilemma (cont.)

The bias-variance dilemma is general phenomenon and also occurs as the
under/overfitting problem in neural networks. In the context of neural
networks:

Bias is a measure of how much the network output, averaged over all
possible data sets differs from the desired function.

Variance is a measure of how much the network output varies
between data sets.

In early stage of training, the bias is large because the network is far from
the desired function. If the network is trained too long, then the network
will also have learned the noise specific in the data set.
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Bias-Variance Dilemma (cont.)
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Deep Double Descent
Conventional wisdom in classical statistics: Once we pass a certain
threshold “large models are worse”.

Conventional wisdom among practitioners “larger models are better”.
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Deep Double Descent (cont.)

See Deep Double Descent: Where Bigger Models and More Data Hurt
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https://openai.com/blog/deep-double-descent/


Brief Overview of CNN

Note: This is the “famous” LeNet5 architecture originally proposed for
digit recognition.
See:Visualizing and Understanding Convolutional Networks and
Video: Deep Visualization Toolbox
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http://yann.lecun.com/exdb/lenet/
https://arxiv.org/pdf/1311.2901.pdf
https://www.youtube.com/watch?v=AgkfIQ4IGaM


Recurrent Neural Networks, LSTM & Summary

Note: Our so far investigated feed-forward neural networks worked on
independent and identically distributed (short i.i.d) data. For sequential
data or time series data, recurrent neural network or LSTM are proper
architectures.
Summary:

Deep neural networks scale with data (traditional ML methods not)
and currently need a lot of data.

Pick proper neural network architecture (CNN, LSTM, GNN, etc...)
for your problem.

Don’t give while training neural network.
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Support Vector Machine (SVM)
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Quick Recap. on Lagrange Multipliers

Given the following optimization problem:

maximize f (x , y) = 2− x2 − 2y2

subject to g(x , y) = x2 + y2 − 1 = 0.

With Lagrange multipliers we can find the extrema of a function of several
variables subject to one or more constraints.

-2

-1

2
-10

0

-8

y
1

-6

-4

-2

0 1

0

x

2

-1 2
-2

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020



Lagrange Multipliers (cont.)
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The gradient of f ,

∇f = grad f (x)

=

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)

is a vector field, where the vec-
tors point in the directions of the
greatest increase of f .

The direction of greatest increase is always perpendicular to the level curves.
The circle (blue curve) is the feasible region satisfying the constraint x2 +
y2 − 1 = 0
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Lagrange Multipliers (cont.)
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At extreme points (x , y) the gra-
dients of f and g are parallel vec-
tors, that is

∇f (x , y) = λ∇g(x , y)

To find the (x , y) we have to solve

∇f (x , y) − λ∇g(x , y) = 0
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Lagrange Multipliers Example

Back to our optimization problem:

maximize f (x , y) = 2− x2 − 2y2

subject to g(x , y) = x2 + y2 − 1 = 0.

L(x , y , λ) = f (x , y) − λg(x , y) = 2− x2 − 2y2 − λ(x2 + y2 − 1)

∂L(x , y , λ)

∂x
= −2x − 2λx = 0

∂L(x , y , λ)

∂y
= −4y − 2λy = 0

∂L(x , y , λ)

∂λ
= −x2 − y2 + 1 = 0

Solving the equation system gives: x = ±1 and y = 0 (λ = −1) and x = 0
and y = ±1 (λ = −2).

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020



Plus/Minus and Zero Hyperplane
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Optimal Separating Hyperplane
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{x|wT · x + b = 1}
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Let x3 be any point on the “mi-
nus” hyperplane and let x1 be the
closest point to x3.

wT · x1 + b = +1

wT · x3 + b = −1
x1 = x3 + λw

wT · (x3 + λw)︸ ︷︷ ︸
x1

+b = 1

wT · x3 + b︸ ︷︷ ︸
−1

+λ‖w‖2 = 1 ⇒ λ = 2
‖w‖2 . We are interested in margin, i.e.

‖x1 − x3‖ = ‖λw‖ = λ‖w‖ = 2
‖w‖2 ‖w‖ =

2
‖w‖
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Formulation as an Optimization Problem

Hyperplane with maximum margin (the smaller the norm of the weight
vector w, the larger the margin):

minimize
1

2
‖w‖2

subject to yi (〈w, xi 〉+ b) ≥ 1, i = 1, . . . ,m

Introduce Lagrange multipliers αi ≥ 0 and a Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m∑

i=1

αi (yi (〈w, xi 〉+ b)− 1)

At the extrema, we have

∂

∂b
L(w, b,α) = 0,

∂

∂w
L(w, b,α) = 0
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Optimization and Kuhn-Tucker Theorem

leads to solution

m∑

i=1

αiyi = 0, w =

m∑

i=1

αiyixi .

The extreme point solution obtained has an important property that results
from optimization known as the Kuhn-Tucker theorem. The theorem says:

Lagrange multiplier can be non-zero only if the corresponding inequality
constraint is an equality at the solution.

This implies that only the training examples xi that lie on the plus and
minus hyperplane have their corresponding αi non-zero.
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Relevant/Irrelevant Support Vector

More formally, the Karush-Kuhn-Tucker complementarity conditions say:

αi [yi (〈w, xi 〉+ b)− 1] = 0, i = 1, . . . ,m

the Support Vectors lie on the margin. That means for all training points

[yi(〈w, xi 〉+ b)] > 1 ⇒ αi = 0 → xi irrelevant

[yi(〈w, xi 〉+ b)] = 1 (on margin) → xi Support Vector
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Relevant/Irrelevant Support Vector

w
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Dual Form

The dual form has many advantages

Formulate optimization problem without w (mapping w in
high-dimensional spaces).

Formulate optimization problem by means of α, yi and dot product
〈xi , xj 〉.
Quadratic Programming Solver.

maximize W (α) =
m∑

i=1

αi −
1

2

m∑

i ,j=1

αiαjyiyj〈xi , xj 〉

subject to αi ≥ 0, i = 1, . . . ,m and
m∑

i=1

αiyi = 0
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Hyperplane Decision Function

The solution is determined by the examples on the margin. Thus

f (x) = sgn (〈w, x〉 + b)

= sgn

(
m∑

i=1

yiαi 〈x, xi 〉+ b

)

where
αi [yi (〈w, xi 〉+ b)− 1] = 0, i = 1, . . . ,m

and

w =

m∑

i=1

αiyixi

and choose i such that αi > 0 and b = yi −
∑m

j=1 αjyj〈xi , xj 〉
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Non-separable Case

w

Case where the constraints yi〈w, xi 〉+ b ≥ 1 cannot be satisfied, i.e.
αi →∞
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Relax Constraints (Soft Margin)

Modify the constraints to

yi(〈w, xi 〉+ b) ≥ 1− ξi , with ξi ≥ 0

and add

C ·
m∑

i=1

ξi

i.e. distance of error points to their correct place in the objective function

minimize
1

2
‖w‖2 + C ·

m∑

i=1

ξi

Same dual, with additional constraints 0 ≤ αi ≤ C
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