

Machine Learning Based Track Reconstruction

Joint GlueX-PANDA-EIC ML virtual workshop

22.09.2020 I <u>Waleed Esmail</u>, Tobias Stockmanns and James Ritman Institut für Kernphysik (IKP), Forschungszentrum Jülich

Mitglied der Helmholtz-Gemeinschaft

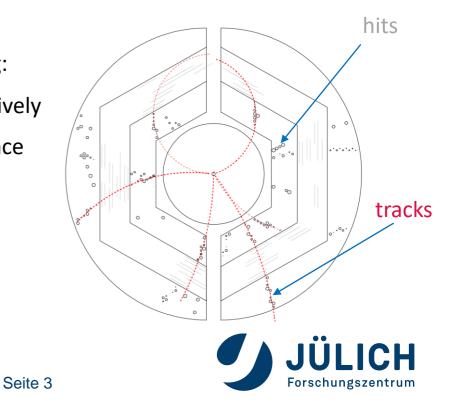
Outlines:

- Introduction
- TrackML challenge
- PANDA FTS
- ANN and RNN application to FTS
- GNN application to FTS
- Track fitting
- Hands-on tutorials

Introduction:

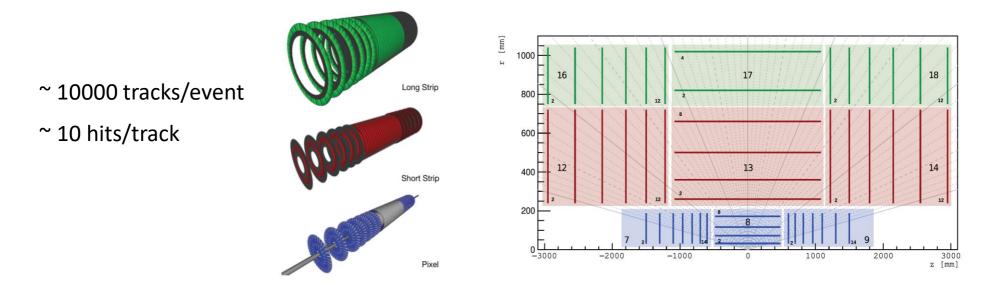
- Track reconstruction is a pattern recognition task
- > Two main steps: Track Finding and Trak Fitting (usually done in iterative procedure).
- Track Finding: assign position measurements (hits) to track candidates (particle paths)
- > Track Fitting: determine track parameters and covariance matrix for each track
- > Track finding is usually the most time-consuming part in the reconstruction process
- > There are two generic approaches for track finding:
 - 1. Local approach: find track candidates consecutively
 - 2. Global approach: find all track candidates at once
- Good tracking algorithm should be high efficiency, high purity, low fake rate, and fast algorithm

Data Analysis Techniques for High-Energy Physics, R. Frühwirth, (1990)



TrackML challenge I:

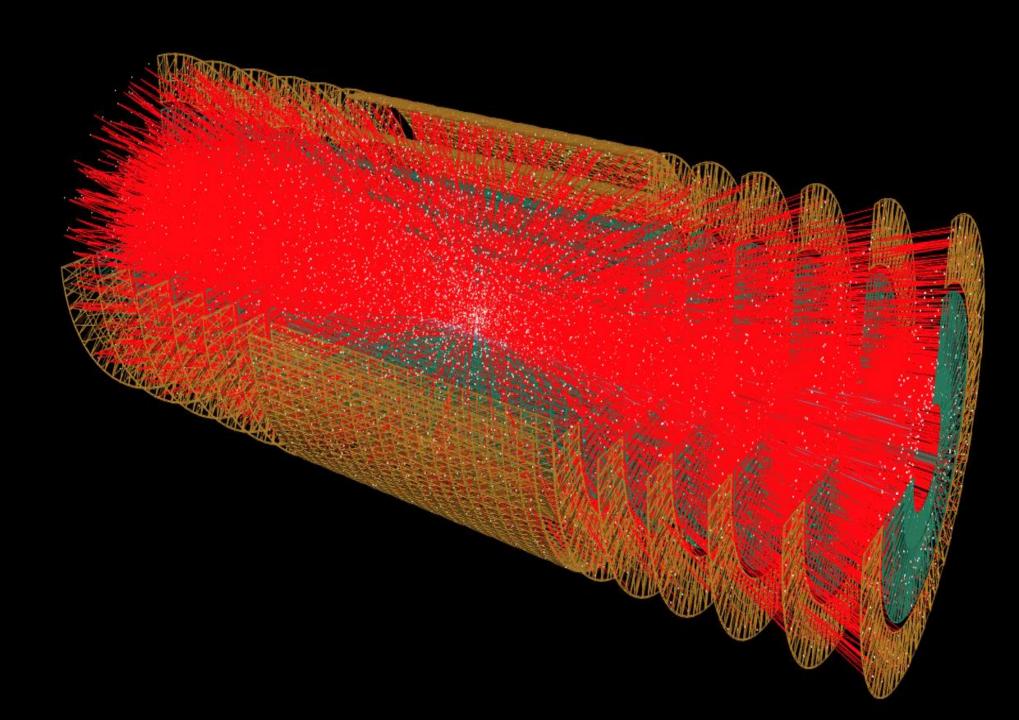
- > A competition hosted by Kaggle (Accuracy) and Codalab (Accuracy & Speed)
- A participant is challenged to build an algorithm that quickly reconstructs particle tracks from 3D points (hits)
- Can ML tracking compete traditional approaches (for HL-LHC)?!
- > Realistic detector model to simulate measured particle hits (ACTS simulation)
- > A hard QCD interaction overlayed with soft QCD interactions (pileup)



EPJ Web of Conferences **214**, 06037 (2019)

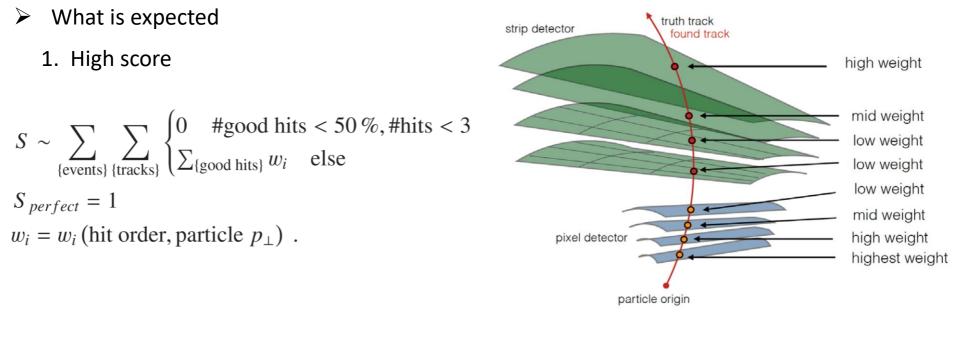
Mitglied der Helmholtz-Gemeinschaft

22.09.2020



TrackML challenge II:

- What is provided
 - 1. 3D space points in global coordinate system (hits)
 - 2. Cells: Each hit originates from one or more active detector cells
 - 3. Ground Truth information (for supervised models)

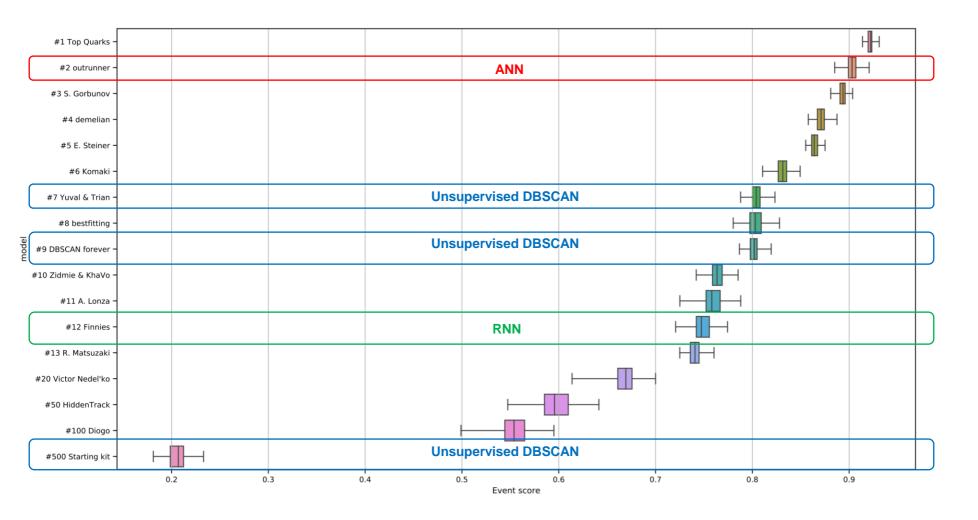


EPJ Web of Conferences 214, 06037 (2019)

Mitglied der Helmholtz-Gemeinschaft

22.09.2020

TrackML Solutions



JÜLICH Forschungszentrum

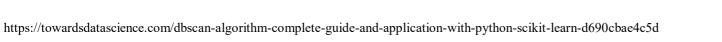
EPJ Web of Conferences **214**, 06037 (2019)

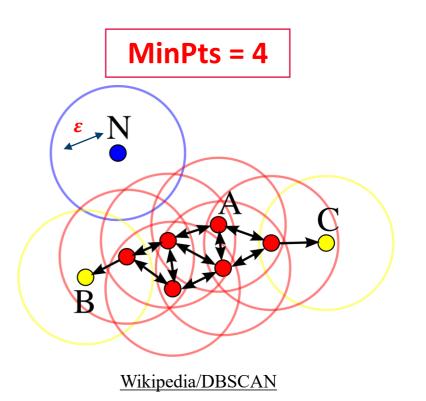
Mitglied der Helmholtz-Gemeinschaft

22.09.2020

TrackML Solutions: (DBSCAN I)

- > Track finding is a clustering process, so why not to use **unsupervised** methods!
- > Clustering: cluster data points (hits) that are more similar to each other
- DBSCAN Density Based Spatial Clustering of Applications with Noise
- > Density is parametrized by a hyperparameter $\boldsymbol{\varepsilon}$.
- Label is assigned to each data point
 - 1. core point (>= min # of points MinPts within ε)
 - 2. **boarder point (<** min # of points **MinPts** within *ɛ*)
 - 3. all other points are noise points.
- A point q is directly reachable from p if point q is within distance ε from core point p, or if there is a path of points.





TrackML Solutions: (DBSCAN II)

- \succ One of the baseline solution with accuracy \sim 0.25
- > Idea is to do hit transformation

$$r_1 = \sqrt{x^2 + y^2 + z^2}$$

$$x_2 = x/r_1$$

$$y_2 = y/r_1$$

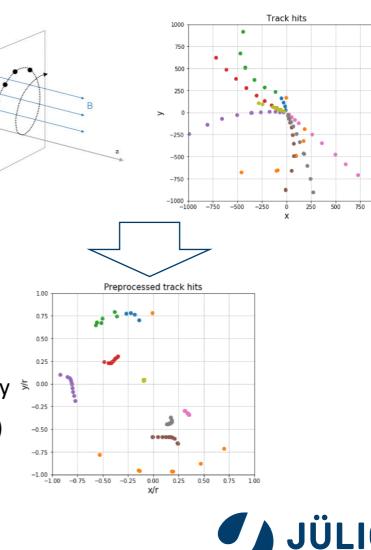
$$r_2 = \sqrt{x^2 + y^2}$$

$$z_2 = z/r_2$$

- Many other solutions based on DBSCAN are heavily
 dependent on preprocessing (feature engineering)
- Core idea is to unroll the helix

EPJ Web of Conferences **214**, 06037 (2019)

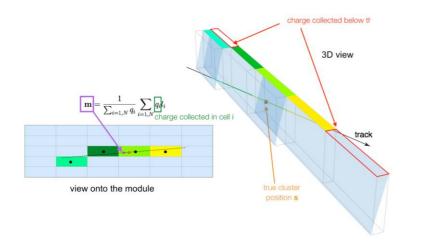
werse plane

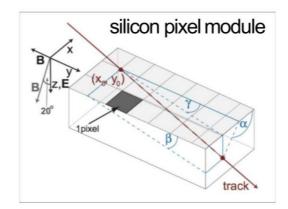


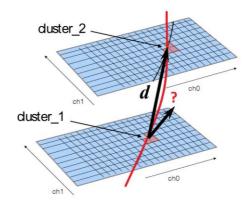
1000

Forschungszentrum

- > The solution that ranked **second in the challenge** is using an artificial neural network.
- Input [two hits] -> DNN -> output [pair quality]
- Input features (x, y, z, direction from cells, ...)
- Output (pair probability) -> (Adjacency Matrix)







EPJ Web of Conferences 214, 06037 (2019). Kaggle/TrackML

Mitglied der Helmholtz-Gemeinschaft

> Build tracks by maximizeing the sum of probabilities

	h1	h2	h3	h4	h5
h1	-	0.8	0.2	0.9	0.4
h2	0.8	-	0.5	0.7	0.7
h3	0.2	0.5	-	0.3	0.4
h4	0.9	0.7	0.3	-	0.4
h5	0.4	0.7	0.4	0.4	-

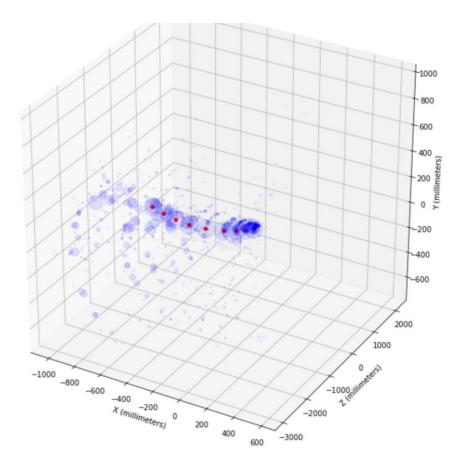
➢ If threshold = 0.65

	h1	h2	h3	h4	h5
h1	I	0.8	I	0.9	-
h2	0.8	-	-	0.7	0.7
h3	-	-	-	-	-
h4	0.9	0.7	-	-	-
h5	-	0.7	-	-	-

➤ p(h1,h4) = 0.9 > 0.65

EPJ Web of Conferences 214, 06037 (2019). Kaggle/TrackML

Mitglied der Helmholtz-Gemeinschaft

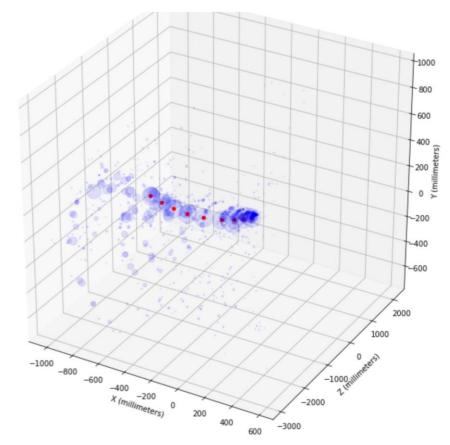


> Build tracks by maximizeing the sum of probabilities

	h1	h2	h3	h4	h5
h1	-	0.8	0.2	0.9	0.4
h2	0.8	-	0.5	0.7	0.7
h3	0.2	0.5	-	0.3	0.4
h4	0.9	0.7	0.3	-	0.4
h5	0.4	0.7	0.4	0.4	-

\blacktriangleright If threshold = 0.65

	h1	h2	h3	h4	h5
h1	-	0.8	-	0.9	-
h2	0.8	-	-	0.7	0.7
h3	-	-	-	-	-
h4	0.9	0.7	-	-	-
h5	-	0.7	-	-	-



p(h1,h2,h4) = 1.5 > 0.65 -> h1,h2,h4 same track

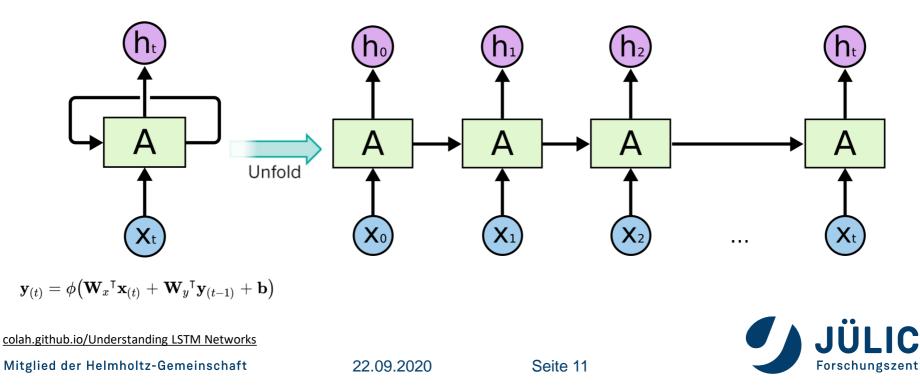
EPJ Web of Conferences 214, 06037 (2019). Kaggle/TrackML

Mitglied der Helmholtz-Gemeinschaft

22.09.2020

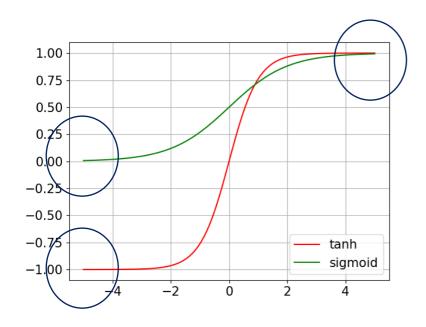
TrackML Solutions: (RNN solution I) Recurrent Neural Networks

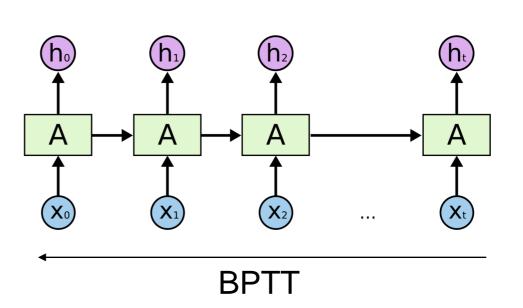
- > The solution that ranked **12th in the challenge** is using recurrent neural networks
- Artificial Neural Networks ANN is also known as feed forward network, because each input shown to them is processed independently
- Recurrent Neural Network RNN processes sequences by iterating through the sequence elements and maintaining a state containing information relative to what it has seen so far



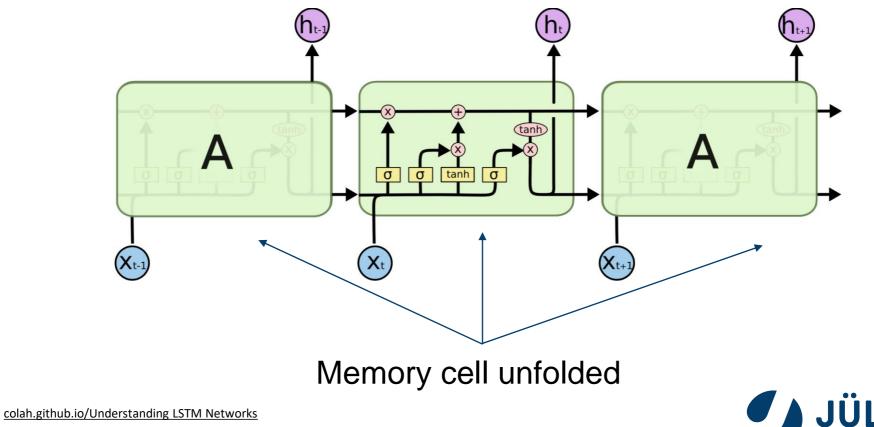
TrackML Solutions: (RNN solution II) Recurrent Neural Networks

- > RNNs are trained using the **backpropagation through time (BPTT)**
- Processing RNN for long sequences leads to vanishing/exploding gradient problem.
- > lower layers do not learn anything.





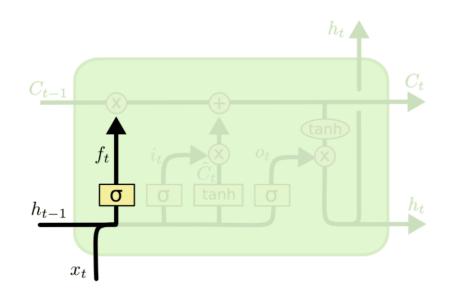
- > LSTM is a variant of RNN that overcomes the vanishing/exploding gradient.
- > LSTM has **memory cells** and can process very long sequences.
- Gates regulate the information flow



Mitglied der Helmholtz-Gemeinschaft

22.09.2020

Forget gate

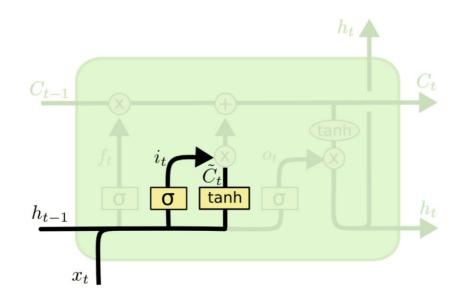


$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

colah.github.io/Understanding LSTM Networks

Mitglied der Helmholtz-Gemeinschaft

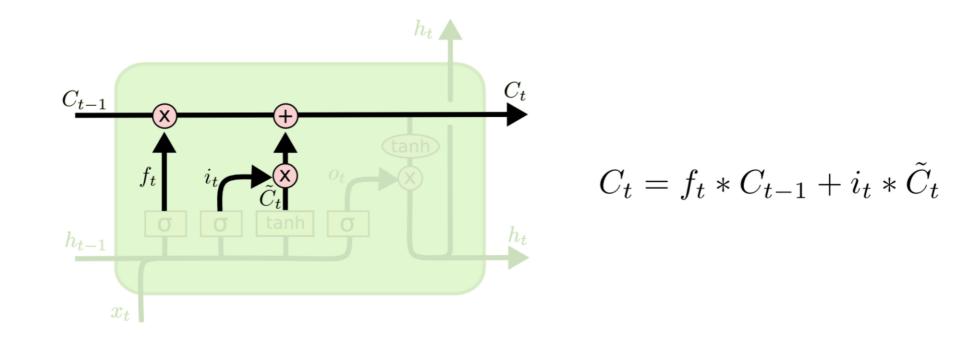
Input gate



$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$
$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Mitglied der Helmholtz-Gemeinschaft

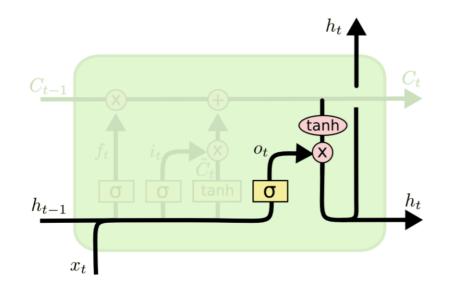
Input gate (cell state)



colah.github.io/Understanding LSTM Networks

Mitglied der Helmholtz-Gemeinschaft

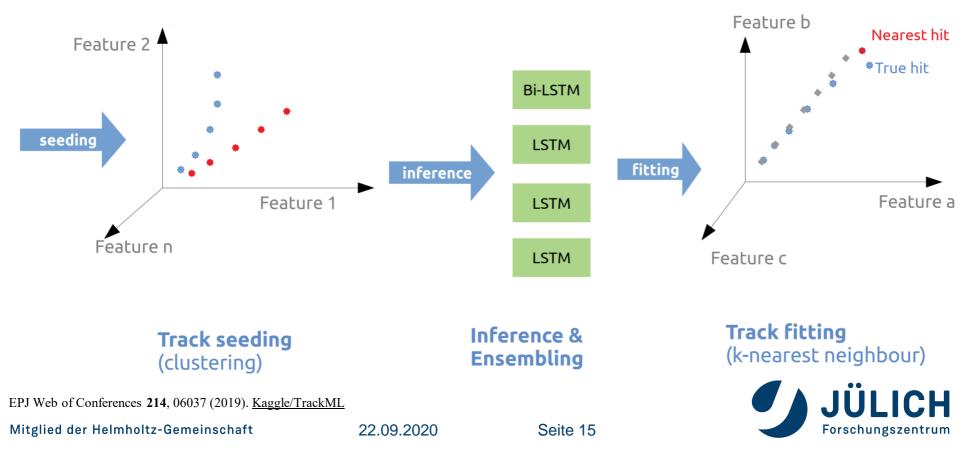
> Output gate

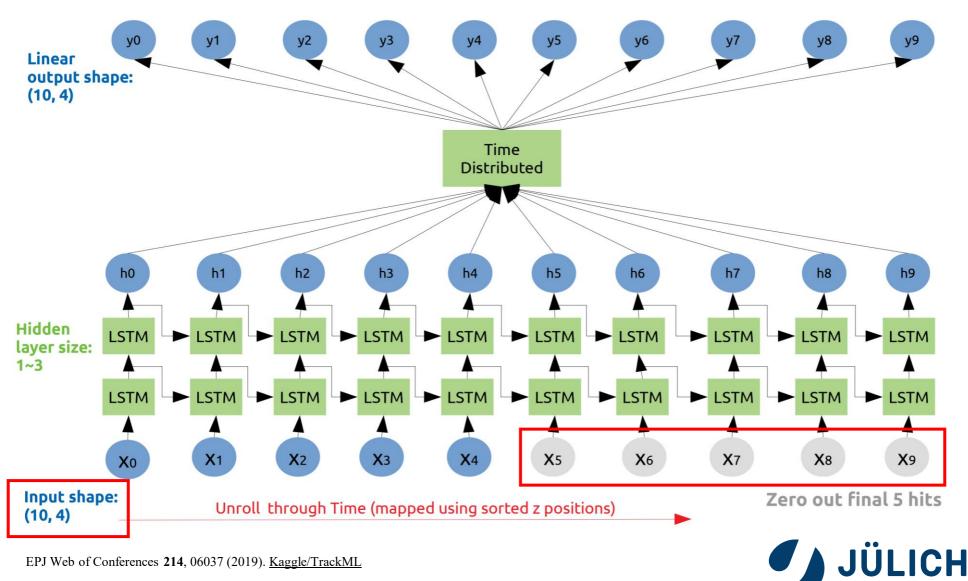


$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

colah.github.io/Understanding LSTM Networks

- ➢ Solution Pipeline:
 - 1. Seed finding (DBSCAN)
 - 2. LSTM for Track Following
 - 3. k-D tree search for hit association





Mitglied der Helmholtz-Gemeinschaft

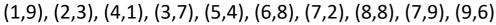
22.09.2020

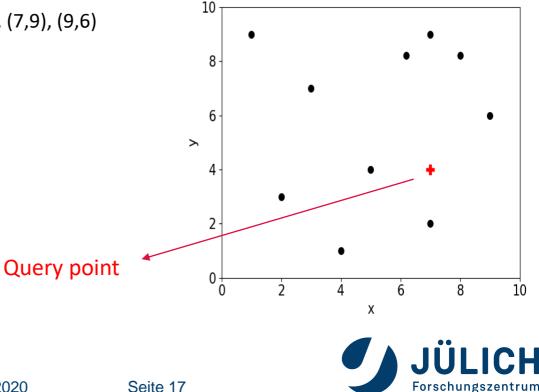
Seite 16

Forschungszentrum

- Multiple architectures LSTMs are trained
- Eensembled with averaging to provide the final prediction
- Build a binary tree to search for the nearest neighbor (4-D Tree)

A simple k-D Tree



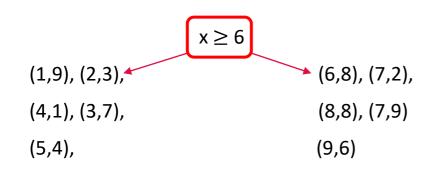


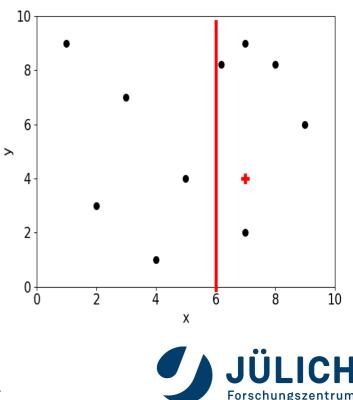
EPJ Web of Conferences 214, 06037 (2019), kNN.15 K-d tree algorithm

- Multiple architectures LSTMs are trained
- Eensembled with averaging to provide the final prediction
- Build a binary tree to search for the nearest neighbor (4-D Tree)

A simple k-D Tree

(1,9), (2,3), (4,1), (3,7), (5,4), (6,8), (7,2), (8,8), (7,9), (9,6)



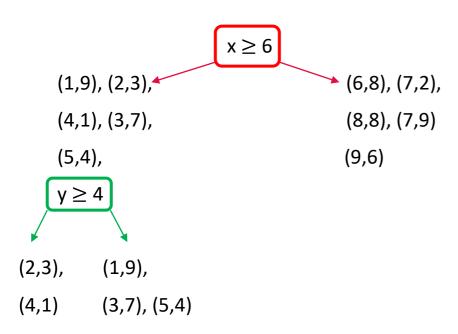


EPJ Web of Conferences 214, 06037 (2019), kNN.15 K-d tree algorithm

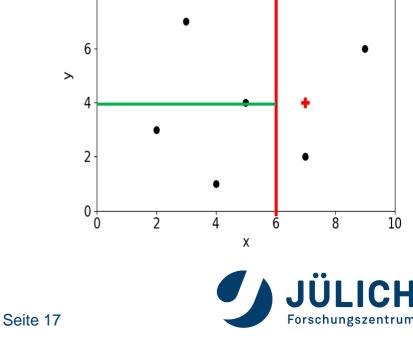
- Multiple architectures LSTMs are trained •
- Eensembled with averaging to provide the final prediction
- Build a binary tree to search for the **nearest neighbor (4-D Tree)**

A simple k-D Tree

(1,9), (2,3), (4,1), (3,7), (5,4), (6,8), (7,2), (8,8), (7,9), (9,6)



EPJ Web of Conferences 214, 06037 (2019), kNN.15 K-d tree algorithm



10

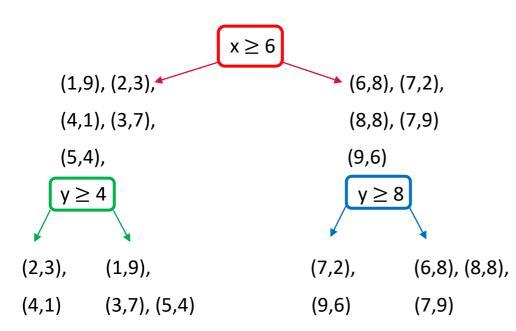
10

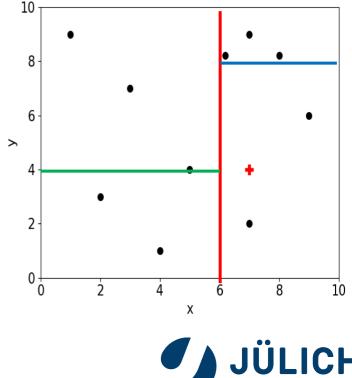
8

- Multiple architectures LSTMs are trained
- Eensembled with averaging to provide the final prediction
- Build a binary tree to search for the nearest neighbor (4-D Tree)

A simple k-D Tree

(1,9), (2,3), (4,1), (3,7), (5,4), (6,8), (7,2), (8,8), (7,9), (9,6)





Forschungszentrum

EPJ Web of Conferences 214, 06037 (2019), kNN.15 K-d tree algorithm

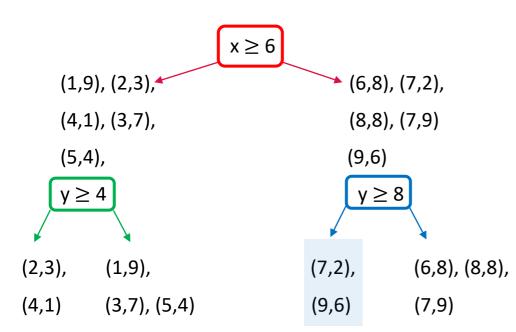
Mitglied der Helmholtz-Gemeinschaft

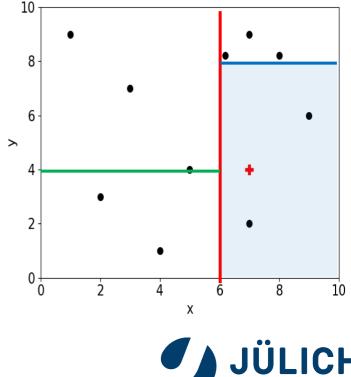
22.09.2020

- Multiple architectures LSTMs are trained
- Eensembled with averaging to provide the final prediction
- Build a binary tree to search for the nearest neighbor (4-D Tree)

A simple k-D Tree

(1,9), (2,3), (4,1), (3,7), (5,4), (6,8), (7,2), (8,8), (7,9), (9,6)





Forschungszentrum

EPJ Web of Conferences 214, 06037 (2019), kNN.15 K-d tree algorithm

Mitglied der Helmholtz-Gemeinschaft

22.09.2020

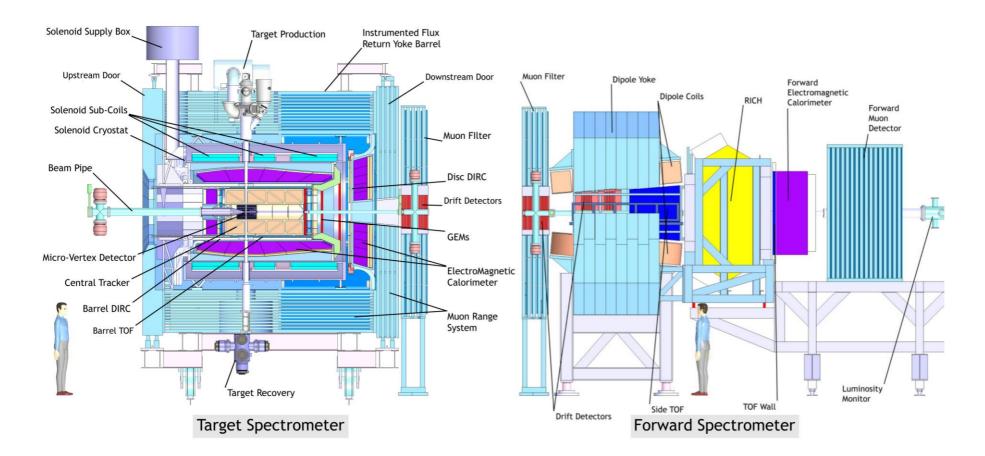
ML Based Track Finding at PANDA FTS

Mitglied der Helmholtz-Gemeinschaft

22.09.2020

PANDA Detector:

antiProton ANnihillation at DArmstadt



Machine Learning For Track Finding, (CTD/WIT 2019)

Mitglied der Helmholtz-Gemeinschaft

22.09.2020

PANDA FTS:

<u>Forward Tracking Stations:</u>

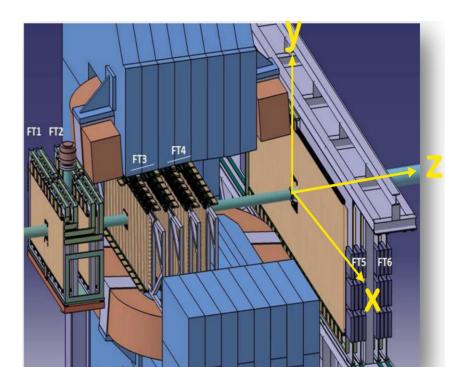
- Straw tubes, same as in the barrel, vertically arranged in double layers
- 3 stations with 2 chambers each
 FTS1&2 : No magnetic field
 FTS3&4 : Inside the field (2Tm)
 - FTS5&6 : No magnetic field
- > 8 double layers per chamber.
- > Orientations 0°/+5°/-5°/0° per chamber
- Tracks are defined by distance of closest approach to the wire (Isochrones)

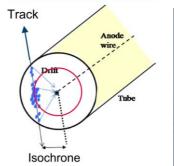
> Inputs: Wire position (hits), Isochrones,

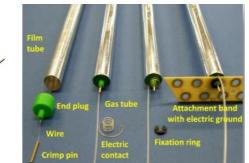
Machine Learning For Track Finding, (CTD/WIT 2019)

. .

22.09.2020





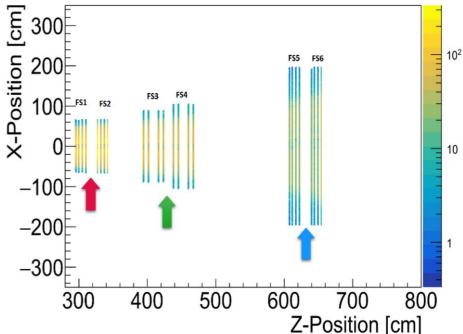


PANDA FTS Algorithm I:

Local approach:

I. Create track segments (tracklets) using Artificial Neural Network

> FTS1 & FTS2 FTS3 & FTS4 FTS5 & FTS6



II. Connect the segments using LSTM

```
Make all possible combinations of tracklets
```

Machine Learning For Track Finding, (CTD/WIT 2019)

PANDA FTS Algorithm I: Step I

All possible combinations of hit pairs ONLY adjacent layers
 ONLY vertical layers

Network predict the quality of the pair

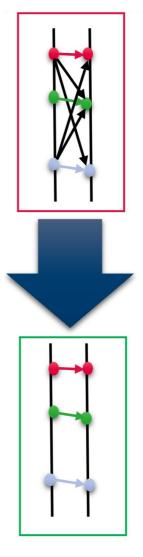
>Input Hit Pair(x,z,r) -> DNN -> Probability

Training data -> 5 tracks/event (particle gun)

Clustering using the probability output (threshold)

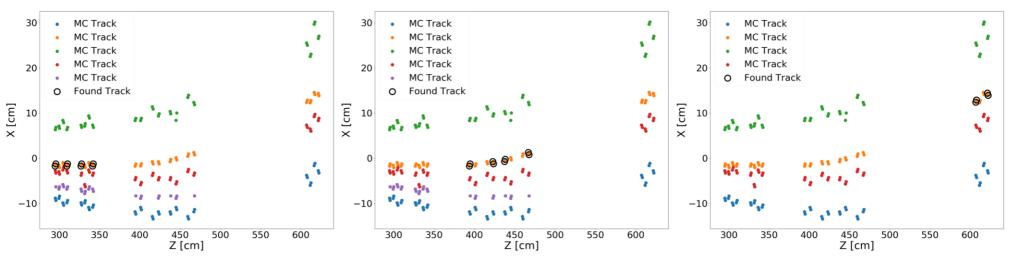
- 1. if Prob(h₁,h₂) > threshold and,
- 2. $Prob(h_2,h_3) > threshold$
 - (h_1, h_2, h_3) on the same track

Machine Learning For Track Finding, (CTD/WIT 2019)



Accuracy ~ 96%

PANDA FTS Algorithm I: Step I

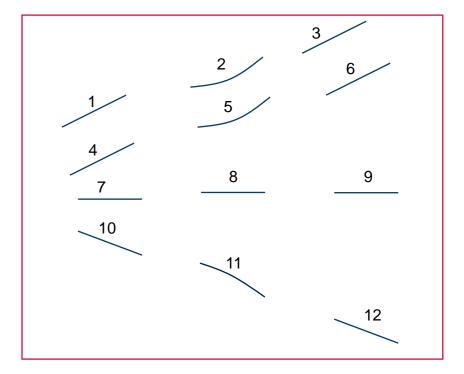


Machine Learning For Track Finding, (CTD/WIT 2019)

Mitglied der Helmholtz-Gemeinschaft

PANDA FTS Algorithm I: Step II

- ➤All possible combinations of tracklets
- [1,2,3], [1,2,6], [1,5,3], ...
- LSTM is used as a classification model ~ 98%
- Network predict the quality of the track candidate

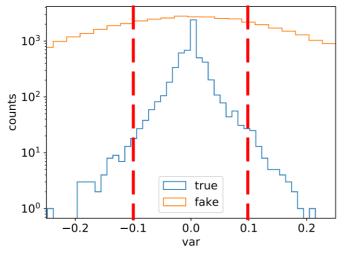


PANDA FTS Algorithm I: Step II

➤All possible combinations of tracklets

[1,2,3], [1,2,6], [1,5,3], ...

➢Network predict the quality of the track candidate



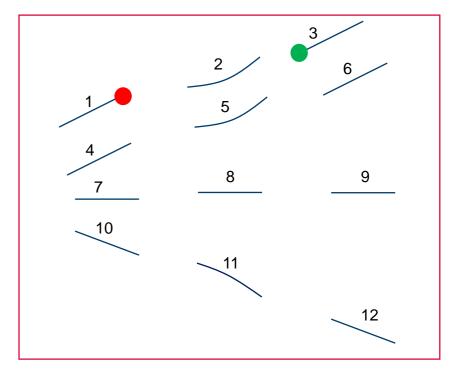
$$\geq a = z/x$$

 \gg var = $a_2 - a_1$

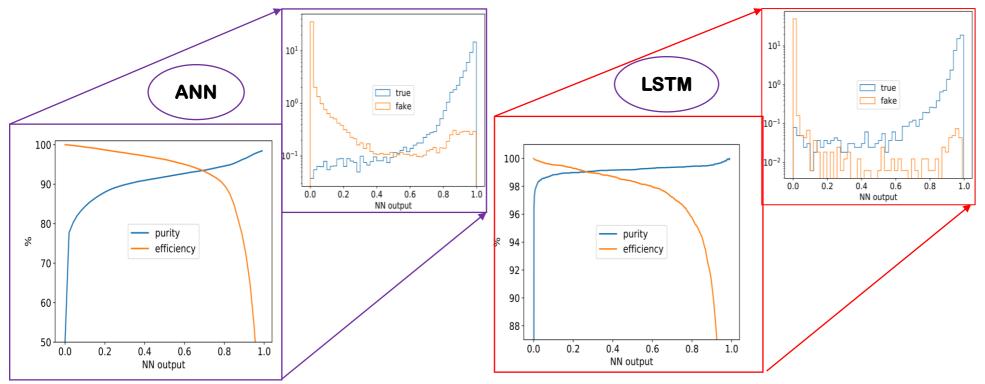
R(fake/true) ~ 8 --> 4

Machine Learning For Track Finding, (CTD/WIT 2019)

Mitglied der Helmholtz-Gemeinschaft



PANDA FTS Algorithm I: Optimizing Probability Cuts:



Purity = true that pass the cut / all that pass the cut

- >efficiency = true that pass the cut / all true
- >Overall tracking efficiency ranging from ~ 80 ~ 100 %

Machine Learning For Track Finding, (CTD/WIT 2019)

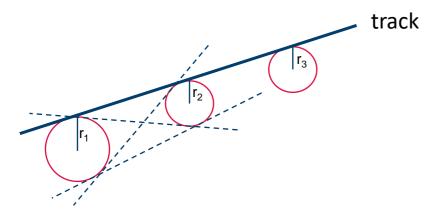
PANDA FTS Algorithm I: Resolving Ambiguity:

All possible combinations of triplets ONLY adjacent layers

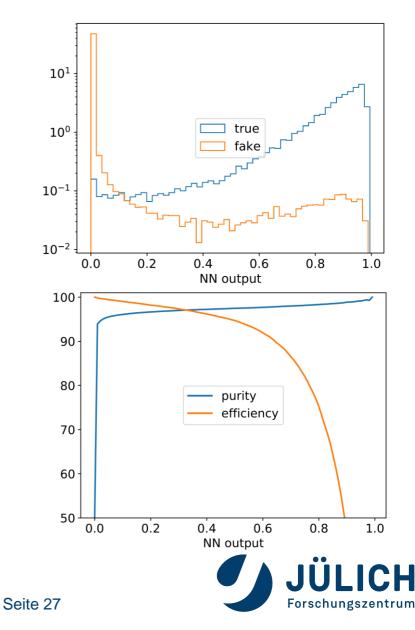
>ONLY vertical layers

> Network predict the quality of the triplet

>Input Hit Triplet(x,z,r) -> DNN -> Probability



>Overall **tracking efficiency** comparable to hitpairs.



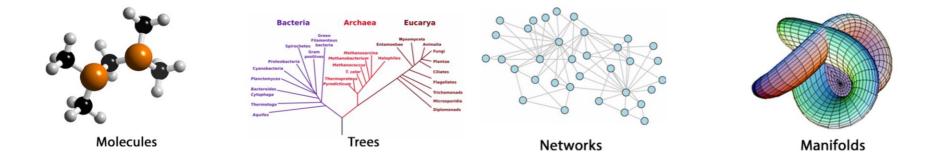
Tracking Using Graph Neural Networks

Mitglied der Helmholtz-Gemeinschaft

22.09.2020

Geometric Deep Learning GDL

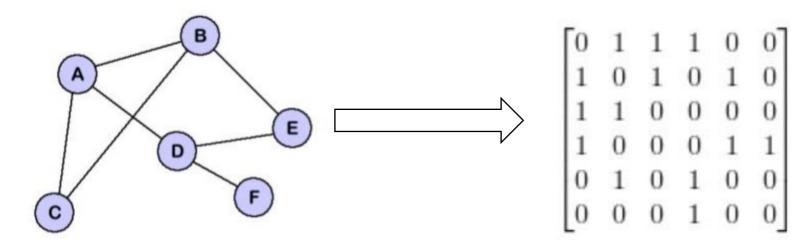
- Images, text, audio, and many others are called euclidean data
- Non-euclidean data can represent more complex items and concepts with more accuracy than 1D or 2D representation
- GDL is about building neural networks that can learn from non-euclidean data
- > Non-euclidean data can be resented as a Graph



What is Geometric Deep Learning?, Flawnson Tong, medium.com, 2019

Graph Concept

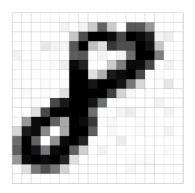
- A graph is a data structure comprising of nodes (vertices) and edges connecting nodes
- Graph = G(X,E) can be resented by a matrix (e.g. Adjacency Matrix)

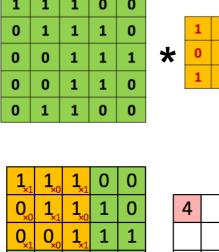


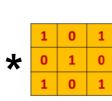
- Graph can be directed or undirected
- The neural network itself can be viewed as a graph, where nodes are neurons and edges are weights

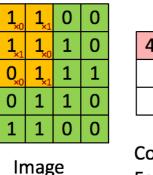
Convolution Operation

- An image can be represented as a matrix of pixel values
- The purpose of Convolution is to extract features from the input image



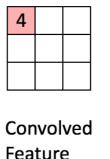




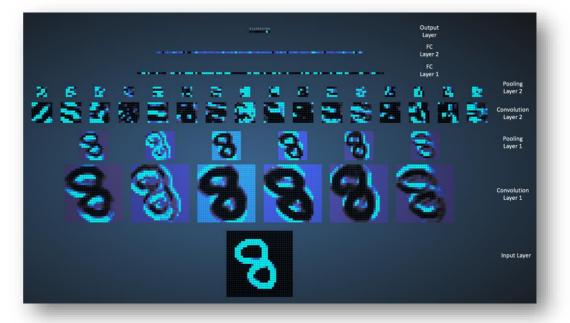


0

0



Matrix Multiplication



An Intuitive Explanation of Convolutional Neural Networks 2016 1.

Graph Neural Networks GNN

Gconv

ReLu

- Motivated by CNN and graph embeddings
- RecGNNs, ConvGNNs, GAEs, …

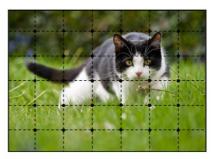
ReLu

Gconv

Graph

X

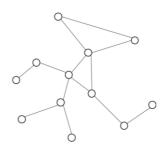
Euclidean

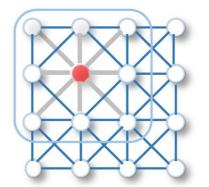


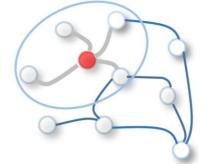
v

Softmax •

Non-Euclidean







Tasks: Node-level, Edge-level, Graph-level.

1. Graph Neural Networks: A Review of Methods and Applications Jie Zhou 2019

The target of GNN is to

learn a state embedding

(neighborhood relations)

 $H^{t+1} = F(X, H^t)$

2. A Comprehensive Survey on Graph Neural Networks Zonghan Wu 2019

Global approach

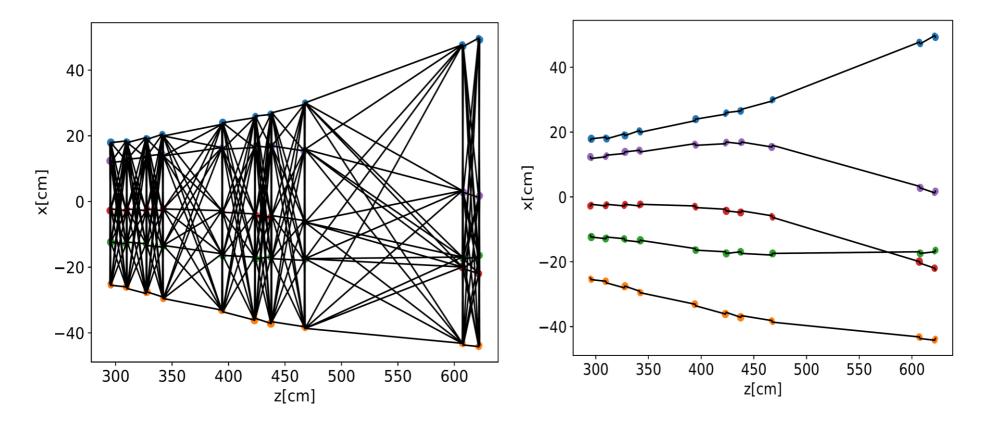
- GNN is used as a binary classifier (hit-pairs classification or edge classification)
- Input is a graph (FTS hits of one event).
- Two main components: edge network and node network
- Edge network uses the node features to compute edge weights
- Node network aggregates node features with the edge weights and updates node features
- With each graph iteration, the model propagates information through the graph, strengthens important connections, and weakens useless ones.

```
node features = [x, z, isochrone]
graph iterations = 3
```


^{1.} Novel deep learning methods for track reconstruction Steve Farrell, CTD/WIT 2018

Input Graph

Ideal Graph



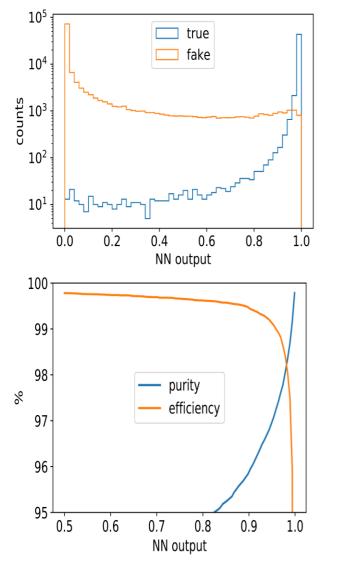
JÜLICH Forschungszentrum

Graph Convolution Networks for FTS, Waleed Esmail 2020

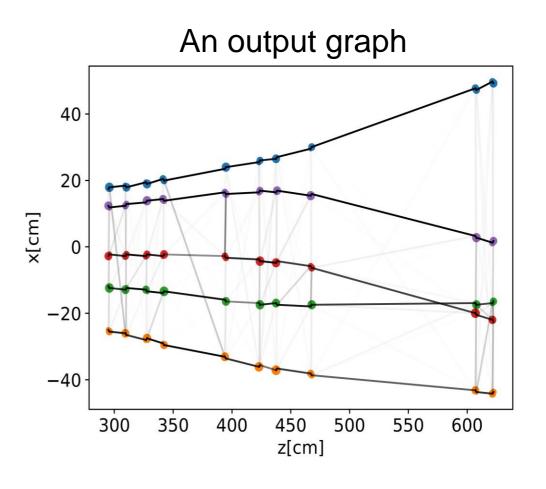
Mitglied der Helmholtz-Gemeinschaft

22.09.2020

GNN applied to FTS:



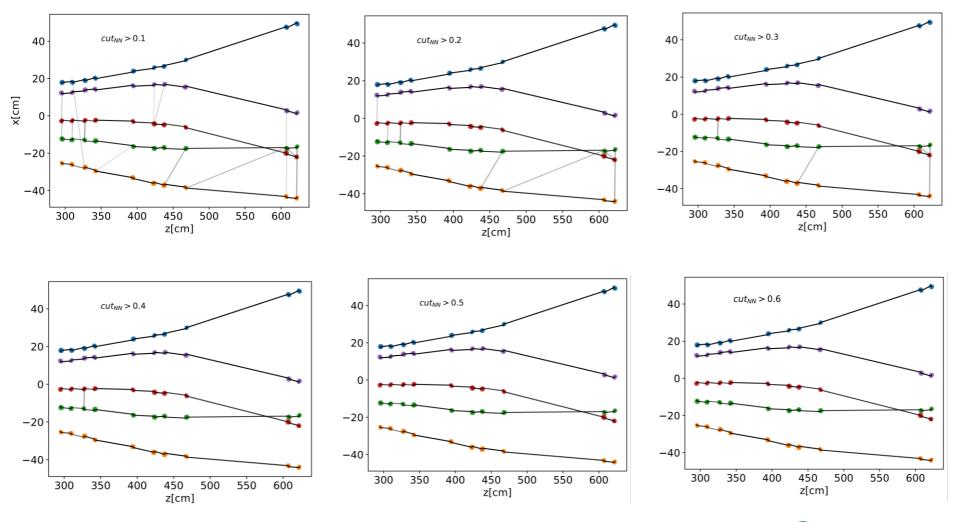
Accuracy ~ 99%



Graph Convolution Networks for FTS, Waleed Esmail 2020

Mitglied der Helmholtz-Gemeinschaft

22.09.2020



JÜLICH Forschungszentrum

Graph Convolution Networks for FTS, Waleed Esmail 2020

Mitglied der Helmholtz-Gemeinschaft

22.09.2020

- Finding tracks is finding graph connected components (subgraphs)
- > A traversal algorithm, starting at vertex v_i then visit all vertices.

```
Mark all vertices as not visited
For every vertex v:
    if v is not visited call DFS()
DFS()
Mark v as visited
store v in a list
    For every edge (adjacent vertices v and u):
        if u is not visited, then recursively call DFS()
```

Graph Convolution Networks for FTS, Waleed Esmail 2020

Tracking QA:

1. Track efficiency

How many MC tracks have been found by track finderfinder

2. Purity

Belong all hits of one found track belong to one MC track.

3. Ghosts

➢ How many hits not belonging to an MC track have been found

4. Partially found

Not all hits belonging to one track have been found but all hits belong to one MC track

5. Spurious found

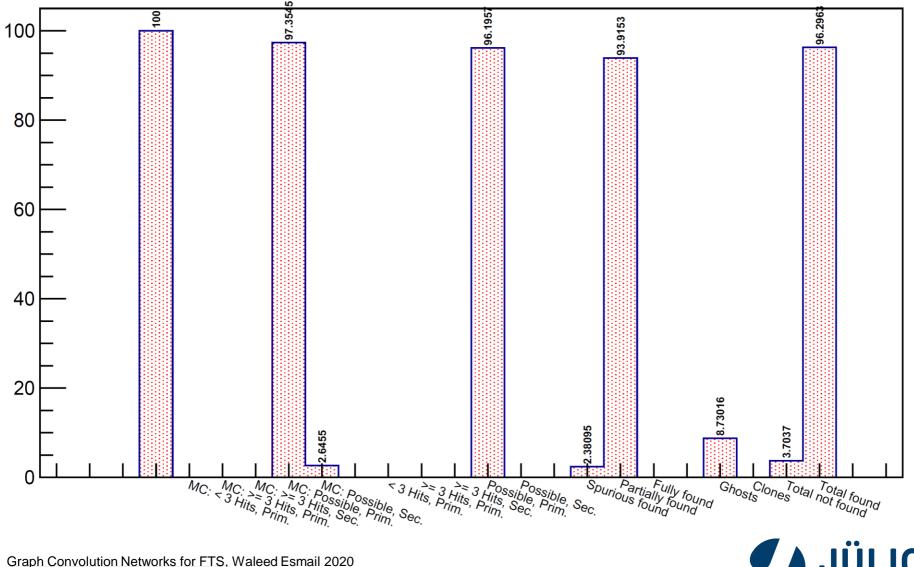
> > 70% found hits belong to one MC track

6. Fully found

> 100 % of MC hits have been found and no other hits are part of the track

Graph Convolution Networks for FTS, Waleed Esmail 2020

Tracking QA:

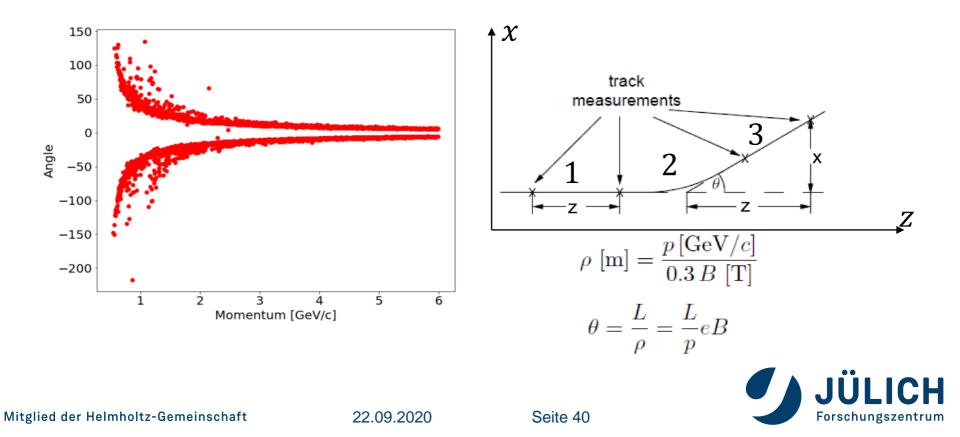


Mitglied der Helmholtz-Gemeinschaft

22.09.2020

Track Fitting:

- Track Reconstruction = Track Finding + Track Fitting
- Standard approach in many experiments is the Kalman Filter
- Kalman Filter needs starting values (seed)
- Track Fitting delivers parameters needed for physics analysis (e.g. Momentum)
- Momentum is estimated from track curvature

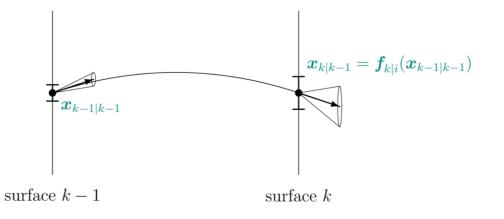


Track Fitting:

> Track Model is a parametrization of the track (state vector)

$$\begin{pmatrix} x \\ y \\ t_x \\ t_y \\ q/p \end{pmatrix} \text{ with } t_x = \frac{\partial x}{\partial z} \text{ and } t_y = \frac{\partial y}{\partial z}$$

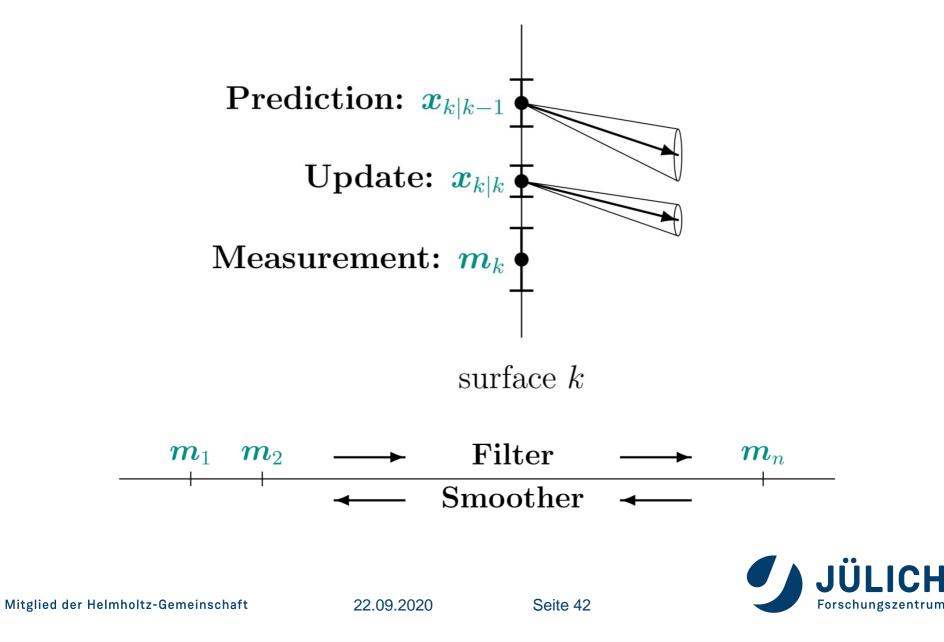
> Kalman filter has two steps that are repeated **prediction** and **update**



Prediction step of the Kalman filter

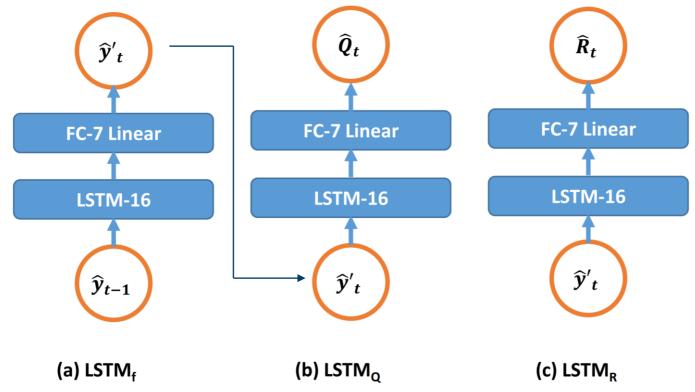
22.09.2020

Track Fitting:



Deep Learning Track Fitting:

- > Inputs: seed state vector --> Model --> best estimate of state vector
- LSTM model Kalman update

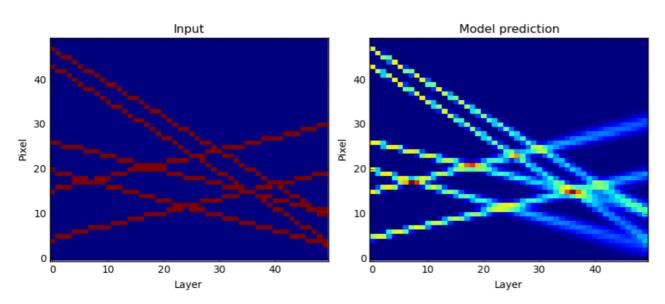


Long Short-Term Memory Kalman Filters: Recurrent Neural Estimators for Pose Regularization, H. Coskun 2017

Deep Learning Track Fitting:

- The HEP.TrkX project is exploring the applicability of advanced machine learning algorithms to HL-LHC track reconstruction
- CNN + LSTM model
- Toy dataset with custom loss function (see David's talk Thursday)

$$L(x, y) = \log |\Sigma| + (y - f(x))^T \Sigma^{-1} (y - f(x))$$



The HEP.TrkX Project: deep neural networks for HL-LHC online and offline tracking, Steven Farrell 2017

Residual distribution for NN : $\mu = 0.000$, $\sigma = 0.146$ 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0∟ _1.0 -0.50.0 1 0 05 Slope (truth-predict) Residual distribution for NN : $\mu = 0.055$, $\sigma = 0.526$ 1.0 0.8 0.6 0.4 0.2 0.0 -2 0 Intercept (truth-predict)

Mitglied der Helmholtz-Gemeinschaft

22.09.2020

Hands-on Tutorials:

https://github.com/wesmail/ML-GlueX-EIC-PANDA

git clone https://github.com/wesmail/ML-GlueX-EIC-PANDA.git

Tutorials in perfect order

- 1. data_exploration.ipynb
- 2. DBSCAN.ipynb
- 3. hit_pairs.ipynb
- 4. RNN.ipynb
- 5. GNN.ipynb

Thank You

Mitglied der Helmholtz-Gemeinschaft

22.09.2020