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Overview

This lecture consists of two parts
@ 1. Part: How to

i) Example analysis on a toy data set
ii) Definition and comparison of basic evaluation metrics

@ 2. Part: Hands-On

i) Perform your own analysis on different toy data sets
ii) Train and evaluate your own classifier with scikit
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This Lecture...

. will mainly focus on supervised learning with labeled data

. covers only a small fraction of all available classification metrics

. does NOT turn you into an Al specialist

. aims to give you a rough idea about particle identification with machine learning
uses a generated and simple (in terms of complexity) data set

. will not deal with machine learning in great detail (done in ""ML for Beginners" by
Thomas Stibor)

includes material mainly from:
> Wikipedia
> Apache Spark Documentation
> Scikit Documentation

most likely contains several errors — please report them
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www.wikipedia.com
https://spark.apache.org/docs/latest/mllib-evaluation-metrics.html
https://scikit-learn.org/stable/

Part I: How to

Picture taken from here
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http://fanboyplanet.com/the-greatest-battle-of-them-all-coyote-vs-acme/

Particle Identification - PID

ﬁ
Particle Data

Features

Al MODEL

Discriminant
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Particle Identification - PID

Data

ﬁ
Particle

Features

- translate raw data to: energies, angles,
images,... Al MODEL
- tracking
- select subsample
- normalization
- selection criteria (i.e. cuts)

Discriminant
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Particle Identification - PID

ﬁ ﬁ

Features

The less is done here, the more Al MODEL
complex your model might become
(e.g. machine -> deep learning)

Discriminant

Deep Learning

Machine Learning

Performance

‘ Amount of data

picture taken from deep learning for science
school (2019), talk by Mustafa Mustafa “Neural Networks 1”
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Particle Identification - PID

ﬁ
Particle Data

Features

- K-Means clustering
- Neural Networks
- Decision Trees

- 4—
- Gaussian Processors Al MODEL
- Support Vector Machines

Discriminant
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Particle Identification - PID

ﬁ ﬁ

Features
Al MODEL
- Score
- Likelihood <+—Discriminant
- Distance
- Chisquare

e.g. 1: electron / 0: pion
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In a Nutshell

@ Particle identification aims to solve a classification problem
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In a Nutshell

@ Particle identification aims to solve a classification problem

@ The Al model (or classifier) simply represents a function frmode

fmoder : Features (information from detector) — Discriminant (1)
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In a Nutshell

@ Particle identification aims to solve a classification problem
@ The Al model (or classifier) simply represents a function frmode

fmodel : Features (information from detector) — Discriminant (1)

@ fimodes is determined by:

» Choice of model / algorithm
> Provided data
> Training (conditions)
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In a Nutshell

@ Particle identification aims to solve a classification problem

@ The Al model (or classifier) simply represents a function frmode

fmoder : Features (information from detector) — Discriminant (1)

@ fmodel is determined by:

» Choice of model / algorithm
> Provided data
> Training (conditions)

@ Need to judge quality of froder

> How well does f,04e solve the underlying classification problem?
> Can fpodel be applied on data sets other than the training data?
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In a Nutshell

@ Particle identification aims to solve a classification problem

@ The Al model (or classifier) simply represents a function frmode

fmoder : Features (information from detector) — Discriminant (1)

@ fmodel is determined by:

» Choice of model / algorithm
> Provided data
> Training (conditions)

@ Need to judge quality of froder

> How well does f,04e solve the underlying classification problem?
> Can fpodel be applied on data sets other than the training data?

= Need performance metrics to address these questions properly
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Binary Classification

Example:
1 Features

@ One event with 2 possible particle

- types (e.g. 1 and 2)

1 Discriminant =f___(Features)

APPLY
THRESHOLD

1 Predicted Label =f,  (Discriminant)

£t
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Binary Classification

Example:
@ One event with 2 possible particle
@ Event is characterized by an n-dim
(Features) feature vector Vieat

model

1 Discriminant =f

APPLY
THRESHOLD

1 Predicted Label =f,  (Discriminant)

£t
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Binary Classification

Example:
1 Features

@ One event with 2 possible particle
@ Event is characterized by an n-dim

1|Discriminant =f_.(Features)| feature vector Viear

model
e

@ Discriminant D:

APPLY .
THRESHOLD D = frodel(Vreat) € R

1 Predicted Label =f,  (Discriminant)

£t
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Binary Classification

Example:
1 Features

@ One event with 2 possible particle
@ Event is characterized by an n-dim
1 Discriminant =f___(Features) feature vector Viea:

model

@ Discriminant D:

APPLY .
THRESHOLD D = frodel(Vreat) € R

@ Threshold function:

lIPredicted Label = f,,,,,(Discriminant)| LiD>¢
) — )

| fihreshold (D, t) = {2 clse
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Binary Classification

Example:
Features . . .
@ One event with 2 possible particle

@ Event is characterized by an n-dim
1 Discriminant =f___(Features) feature vector Viea:

model

@ Discriminant D:

APPLY .
THRESHOLD D = frodel(Vreat) € R

@ Threshold function:
lIPredicted Label = f

thmshold(Discriminant)I

1, if D>t

fihreshold (D, t) = -

2 else

@ We find: fthreshold(Dy 05) =1

= The event is labeled as particle
type 1
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Multiclass Classification

Example:
lFeatures @ One event with m possible particle
types (e.g. 1, 2, 3,..., m)

1 Discriminant =f

APPLY
THRESHOLD

1 Predicted Label =f, . (Discriminant)

£t

(Features)

mode
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Multiclass Classification

Example:
@ One event with m possible particle
types (e.g. 1, 2, 3,..., m)
- @ Event is characterized by an n-dim
feature vector Vet

1 Discriminant =f___(Features)

model

APPLY
THRESHOLD

1 Predicted Label =f, . (Discriminant)

£t
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Multiclass Classification

Example:

lFeatures @ One event with m possible particle
types (e.g. 1, 2, 3,..., m)

- @ Event is characterized by an n-dim

— feature vector Vieat
[Discriminant = f

(Features)|

model
=

@ Discriminant D:

APPLY o .
THRESHOLD : = D = frode(Veat) € R™

Dnm

1 Predicted Label = f, (Discriminant)

threshold
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Multiclass Classification

l Features

Dlscnmmant =f

APPLY
THRESHOLD

(Features)

mode

Example:

l IPredicted Label =

fthreshold( Discrimina nt)l

£t

Daniel Lersch (FSU)

GlueX-EIC-PANDA ML Workshop

One event with m possible particle
types (e.g. 1, 2, 3,..., m)

Event is characterized by an n-dim
feature vector Vet
Discriminant D:
D
: =D= fmodel (Vreat) € R™
D,
Threshold function:
Fitreshold (D) = i for D; = max[D]
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Multiclass Classification

l Features

Dlscnmmant =f_.q(Features)

APPLY
THRESHOLD

fthreshold( Discrimina nt)l

l IPredicted Label =

£t

Daniel Lersch (FSU)

Example:

GlueX-EIC-PANDA ML Workshop

One event with m possible particle
types (e.g. 1, 2, 3,..., m)

Event is characterized by an n-dim
feature vector Vet
Discriminant D:
D
: =D= fmodel (Vreat) € R™
D,
Threshold function:
Fitreshold (D) = i for D; = max[D]

We find: ﬂhreshold(D) =2
= The event is labeled as particle
type 2
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Threshold Functions

@ Different threshold functions available <> Binary / Multiclass classification ?
@ Shown below are three examples of possible threshold functions:

) fareshotd(D) = i for D; = max[D]

1) Frnreshord (D, t) = i for D; = max[D — t - 1]

iii) fabreshotd(D, t) = i for D; = max[® - D]
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Example Analysis

@ Throughout this lecture (and the hands-on session) we will look at a toy data set:

#Events \ #Species \ #Features \ Labeled ?
~ 257k | 3 ‘ 6 ‘ yes
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Example Analysis

@ Throughout this lecture (and the hands-on session) we will look at a toy data set:

#Events ‘ #Species ‘ #Features ‘ Labeled ?
~257k | 3 | 6 | yes

@ Want to understand / explain PID analysis steps, with the help of this toy data
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Example Analysis

@ Throughout this lecture (and the hands-on session) we will look at a toy data set:

#Events ‘ #Species ‘ #Features ‘ Labeled ?
~257k | 3 | 6 | yes

@ Want to understand / explain PID analysis steps, with the help of this toy data

@ Goal: Classify events in the data, using the provided features
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Example Analysis

@ Throughout this lecture (and the hands-on session) we will look at a toy data set:

#Events ‘ #Species ‘ #Features ‘ Labeled ?
~257k | 3 | 6 | yes

@ Want to understand / explain PID analysis steps, with the help of this toy data
@ Goal: Classify events in the data, using the provided features

@ Approach: Use scikit machine learning algorithm(s)
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Example Analysis

Throughout this lecture (and the hands-on session) we will look at a toy data set:

#Events ‘ #Species ‘ #Features ‘ Labeled ?
~257k | 3 | 6 | yes

Want to understand / explain PID analysis steps, with the help of this toy data
Goal: Classify events in the data, using the provided features

Approach: Use scikit machine learning algorithm(s)

Issue: Evaluate performance of the algorithm(s) properly
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Example Analysis: The Data Set |

15.0

Variable 2

[
N o N
w o w

Variable 4

w
=}

N
w»

4
=)

Variable 1 Variable 3

@ This is the first thing you should do: Look at your input features!

@ Variables show different correlations, depending on the species — Ideal for PID

@ Variables show different ranges
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Example Analysis: The Data Set |

15.0 Species 2

Variable 4

Variable 2
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Species 3

w
=}

N
w»

4
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Variable 1 Variable 3

@ This is the first thing you should do: Look at your input features!

@ Variables show different correlations, depending on the species — Ideal for PID

@ Variables show different ranges
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Example Analysis: The Data Set |l

Variable 6

-0.01 0.00 0.01 0.02 0.03
Variable 2 Variable 4

This is the first thing you should do: Look at your input features!

Variables show different correlations, depending on the species — Ideal for PID
Variables show different ranges
Variable 5 ~ Variable 2

Variable 6 is just a flat random distribution
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Example Analysis: The Data Set Il

@ This data set is labeled:

Species H Label

1 0
2 1
3 2

@ Labeled data allows to perform supervised training

@ But this data set is designed such that one might perform unsupervised learning as
well (e.g. clustering)
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Example Analysis: The Correlation Matrix

Feature Correlations
1.0

0.0

m
—
®©
>

@ Different methods to calculate feature correlations, e.g. Spearman vs. Pearson

< n
Pl —
© ©
> >

@ Off-diagonal elements...

close to one indicate redundancy — no information gain
close to zero indicate no correlation
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Example Analysis: The Correlation Matrix

Feature Correlations
1.0

0.0

var3

< n
Pl —
© ©
> >

— o~
— —
© ©
> >

@ Different methods to calculate feature correlations, e.g. Spearman vs. Pearson
@ Off-diagonal elements...

close to one indicate redundancy — no information gain
close to zero indicate no correlation
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Example Analysis: The Correlation Matrix

Feature Correlations
1.0

0.0

o~ m <
— — Pl
© ®© ©
> > >

@ Different methods to calculate feature correlations, e.g. Spearman vs. Pearson
@ Off-diagonal elements...

close to one indicate redundancy — no information gain
close to zero indicate no correlation
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Example Analysis: Training a Multilayer Perceptron (MLP)

@ Use labels in data — supervised training of MLP

#Inputs \ #Hidden Layers \ #Neurons in Hidden Layer \ #Outputs
4 \ 1 \ 5 \ 3
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Example Analysis: Training a Multilayer Perceptron (MLP)

@ Use labels in data — supervised training of MLP

#Inputs \ #Hidden Layers \ #Neurons in Hidden Layer \ #Outputs
4 \ 1 \ 5 \ 3

@ Used 25% of entire data for validation (explained later in detail)
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Example Analysis: Training a Multilayer Perceptron (MLP)

@ Use labels in data — supervised training of MLP

#Inputs \ #Hidden Layers \ #Neurons in Hidden Layer \ #Outputs
4 \ 1 \ 5 \ 3

@ Used 25% of entire data for validation (explained later in detail)
@ lIgnored variable 5 and 6
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Example Analysis: Training a Multilayer Perceptron (MLP)

Use labels in data — supervised training of MLP

#Inputs \ #Hidden Layers \ #Neurons in Hidden Layer \ #Outputs
4 \ 1 \ 5 \ 3

Used 25% of entire data for validation (explained later in detail)

Ignored variable 5 and 6

Pre-processing: Normalized remaining input features between 0 and 1
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Example Analysis: Training a Multilayer Perceptron (MLP)

Use labels in data — supervised training of MLP

#Inputs ‘ #Hidden Layers ‘ #Neurons in Hidden Layer ‘ #Outputs
4 \ 1 \ 5 \ 3

Used 25% of entire data for validation (explained later in detail)

Ignored variable 5 and 6

Pre-processing: Normalized remaining input features between 0 and 1

First things to check right after training: training curve(s) and output distributions

I — S e e B Output 1 for Species 1
Output 2 for Species 2

104 Output 3 for Species 3

5

—— prediction error on training data A

%]

prediction score on validation data _ﬂc)

€

w

0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8
Epoch Network Output
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Example Analysis: Training a Multilayer Perceptron (MLP)

Use labels in data — supervised training of MLP

#Inputs ‘ #Hidden Layers ‘

#Neurons in Hidden Layer ‘ #Outputs

4| L |

5 3

Used 25% of entire data for validation (explained later in detail)

Ignored variable 5 and 6

Pre-processing: Normalized remaining input features between 0 and 1
First things to check right after training: training curve(s) and output distributions

should converge to 1.0

—— prediction error on training data
prediction score on validation data

should converge tg 0.0
0 10 20 30 40 50
Epoch

Entries [a.u.]

=
o
>

=
o
W

=
o
~
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B Output 1 for Species 1
Output 2 for Species 2
Output 3 for Species 3

Not good, needs
some further attention

0.2

0.4 0.6
Network Output

0.8
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Example Analysis: Using the MLP

@ Applied MLP on entire toy data:

#Events H Labeled as

~ 85k 1
~ 85k 2
~ 87k 8

— Is this good / bad?
@ Need metrics to judge performance properly

@ Our data is labeled — impact on metrics we can use
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Labeled Data

Data with
labeled /

identified
events

Data with

labeled CLASSIFIER :>
events

@ Events are tagged according to particle type (e.g. 1: e™, 2: 7, ...)

@ Consequently, one knows:

i) The abundance of each particle type in the entire data set (e.g. 10k e™)
ii) The relative abundance between the different particles (e.g. N(e™) = 0.1N(7 "))

@ Most common training procedure used here is supervised training
(one could perform unsupervised training of course)
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True and False Positive Rate |

The building Blocks of Performance Evaluation

#Events CORRECTLY identified as species i
#Events labeled as species i

True Positive Rate(i) =

()

#Events FALSELY identified as species i
#Events NOT labeled as species i

False Positive Rate(i) =

3
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True and False Positive Rate |

The building Blocks of Performance Evaluation

#Events
S d(Predicted Label j — i) x 6(True Label j — /)
. N
True Positive Rate(i) = B @
> §(True Label j — i)
j=1
#Events
d(Predicted Label j — /) x [1.0 — §(True Label j — /)]
L. N =1
False Positive Rate(i) = s 3)
[1.0 — 6(True Label j —i)]
j=1
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True and False Positive Rate |l

The building Blocks of Performance Evaluation

@ Analogously, one can define the True Negative and False Negative Rate
@ The True Positive Rate (TPR) and False Negative Rate (FNR) are...

. universal, i.e. they do not! depend on relative abundances between the different
particle types
. characteristic for the used classifier

@ The most important evaluation metrics are directly derived from the TPR and FPR

LGiven enough statistics for each species and each feature distribution!
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Receiving Operator Characteristics (ROC)

@ Suppose a binary classification problem with two particle species (1 and 2)
@ Trained Al Model to solve this problem
@ Basic Question: What is the model actually doing?

@ Approach: Perform a threshold scan

mm Species 1 LOpe oo | e TPR
1000 i °
I Species 2 = 08 ! e FPR
—_ 0 °
; 800 9]
3 —
S, ¢ 06 ¢ .
w600 &
g 04 * .
S 400 2 .
x 0.2 .
200 * e °
0.0 P o o
0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0
Discriminant (Al Model) Threshold
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The ROC-Curve

1.0

0.8

TPR (Species 1)

0.2

0.0/
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The ROC-Curve

1.0y =

0.8

0.6

0.44

TPR (Species 1)

0.2

0.0/

better than
random guess Rt

- worse than

random guess
—e— Al Model
Random Guess
= Optimum
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The ROC-Curve

1.0+ = * /:
- 0.8] high purity, ,//
$ but low statistics ,,/'
O 0.61 | //’
q) ‘/
o o
£ 044
o ,/’
& o —e— Al Model
0.2 L | Random Guess
= Optimum
0.0+ ; . . . . |
0.0 0.2 0.4 0.6 0.8 1.0
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The ROC-Curve
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AUC - Area Under ROC

@ Area under the ROC-Curve is another performance metric
@ AUC = 1.0 <> Optimal classifier

@ AUC = 0.0 ++ Bad classifier

@ Found here: AUC = 0.94

1.0

— 0.84

—

]

2 06

(]

o

£ 0.4

o

= e —e— Al Mode
0.2 ,,/' ————— Random Guess

e = Optimum

0.0

0.0 0.2 0.4 0.6 0.8 1.0

FPR (Species 1)
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Comparing ROC-Curves for different Training Setups

MLP, using normalized features 1 -4

MLP, using features 1- 4

1.0 o 1.0 v
0.8 L 0.8
2 2
© e 1] e
4 - 4 Ve
0.6 -~ 0.6 -
E=) 2 e
z . 2
0.4 . <04 S
o s o L
3 2 -~
= y ROC: Species 1 = L e ROC: Species 1
0.2 -~ ROC: Species 2 0.2 o + ROC: Species 2
ROC: Species 3 = ROC: Species 3
0.0 - ---- ROC: Random Classifier 00! ¥ ---- ROC: Random Classifier
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

False Positive Rate

@ Identify three particle species using differently trained MLP models

@ ROC-curves allow to compare the classification performance between

i) Particle species
ii) Different models

@ AUC for all curves shown here ~ 0.99
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Comparing ROC-Curves for different Training Setups

MLP, using features 1-6

MLP, using normalized features 1 - 4
1.0 v 10 >
0.8 L 0.8 7
-4 e o L
0 0.6 Vs 006 -
2 e 2
= e = e
@ L [ e
£04 7 04 7
[ e [ s
2 o . 2 Ve
= L e ROC: Species 1 = 7 e ROC: Species 1
0.2 Lo ¢ ROC: Species 2 02 L +  ROC: Species 2
L = ROC: Species 3 el = ROC: Species 3
-~ ---- ROC: Random Classifier e ---- ROC: Random Classifier
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

False Positive Rate

@ Identify three particle species using differently trained MLP models

@ ROC-curves allow to compare the classification performance between

i) Particle species
i) Different models

@ AUC for all curves shown here ~ 0.99
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Comparing ROC-Curves for different Classifier

MLP, using normalized features 1 -4 Linear Support Vector Machine, using normalized features 1 - 4
1.0 = 1.0
f”’
0.8 L 0.8
o -
0 0.6 7 0 0.6
2 2
= L =
3 3
0.4 L <04
3 S
3 L e ROC: Species 1 E L * ROC: Species 1
0.2 ¢+ ROC: Species 2 0.2 o ¢ ROC: Species 2
L = ROC: Species 3 L = ROC: Species 3
0.0 ~ ---- ROC: Random Classifier 0.0 ---- ROC: Random Classifier
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate

@ Identify three particle species using two different classification models

@ ROC-curves allow to compare the classification performance between

i) Particle species
i) Different models

@ AUC(MLP) ~ 0.99 / AUC(lin. svm) ~ 0.93
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The Confusion Matrix

@ Right after the ROC, the second most important monitoring tool
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The Confusion Matrix
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@ Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix
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The Confusion Matrix

@ Right after the ROC, the second most important monitoring tool

@ Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix

@ The elements in the confusion matrix € are defined? as:

N—1
ci(t) = D 0(Luuek — &) X 6(Lprea,k(t) — £7) (4)
k=0
1, if x =0,
5(x) = (5)
0, else
@ With:
Wiy, true label of event k

Lpred,k(t) || predicted label of event k, using the threshold t

% the label corresponding to species i

@ NOTE: The definition of the above equation depends on which axis holds the true
/ predicted label

2Directly derived from TPR and FPR
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Confusion Matrix from the Example Analysis

@ Shown below is the confusion matrix for a neural network classifying three particle species
(see previous slides)

@ Ideally: All diagonal elements should be one and all off-diagonal elements should be zero

MLP, using normalized features 1 - 4

Speciesl 0.8
5 0.6
s
P Species2 o 0.91
2 0.4

e | b “ h

Speciesl Species2 Species3
Predicted label
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Confusion Matrix from the Example Analysis

@ Shown below is the confusion matrix for a neural network classifying three particle species
(see previous slides)

@ Ideally: All diagonal elements should be one and all off-diagonal elements should be zero

MLP, using normalized features 1 - 4

Speciesl 0.8
5 0.6
s
?:—ﬂ Species2
= 0.4
Species3 0.2

Speciesl Species2 Species3
Predicted label
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Confusion Matrix from the Example Analysis

@ Shown below is the confusion matrix for a neural network classifying three particle species

(see previous slides)

@ lIdeally: All diagonal elements should be one and all off-diagonal elements should be zero

MLP misidentifies most events ies 3

Speciesl

Species2

True label

Species3

Speciesl Species2

Predicted label

es 3 —> consistent with ROC
MLP, using normalized features 1 - 4

MLP, using normalized features 1 -4

e e ROC: Species 1
ROC: Species 2
= ROC: Species 3
---- ROC: Random Classifier

1.0
0.8
0.8
|
:
06 © 0.6
2
.I‘_‘g
0.4 0.4
o
=]
fi=
0.2 0.2 P
oof ¥’
Species3 0.0

= Always check for consistency between different metrics!

Daniel Lersch (FSU

GlueX-EIC-PANDA ML Workshop

0.2 0.4 0.6 0.8 1.0
False Positive Rate
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The Accuracy

@ The accuracy can be calculated from the weighted trace of the confusion matrix

1

Accuracy = mTr(é) (6)
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The Accuracy

@ The accuracy can be calculated from the weighted trace of the confusion matrix

1 A

Accuracy = FEvents Tr(C) (6)
1 #Species
- #Events Z i @)
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The Accuracy

@ The accuracy can be calculated from the weighted trace of the confusion matrix

1 A

Accuracy = mTr(C) (6)
1 #Species

= Zrens Z Gi (7)
1 #Species

= ZEvents Z TPR(i) - #Events with species i (8)
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The Accuracy

@ The accuracy can be calculated from the weighted trace of the confusion matrix

Accuracy = m Tr(€) (6)
1 #Species
= Zrens Z Gi (7)
S #Spfies TPR(i) - #Events with species i (8)
#Events -
#Species
= > TPR(i)-R(i) (9)

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 27 / 47



The Accuracy

@ The accuracy can be calculated from the weighted trace of the confusion matrix

Accuracy = m Tr(€) (6)
1 #Species
= Zrens Z Gi (7)
R #Spfies TPR(i) - #Events with species i (8)
#Events -
#Species
= > TPR(i)-R(i) (9)

@ Where R(i) denotes the abundance ratio of species i (e.g. 20% protons)
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The Accuracy

@ The accuracy can be calculated from the weighted trace of the confusion matrix

1 A

Accuracy = ZEvents Tr(C) (6)
1 #Species
= ZEew Z Gi (7)
S #Spfies TPR(i) - #Events with speciesi  (8)
#Events -
#Species
= Y TPR()-R(i) )

i

@ Where R(i) denotes the abundance ratio of species i (e.g. 20% protons)

@ The accuracy varies between 0: bad performance and 1: ideal performance
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The Accuracy

@ The accuracy can be calculated from the weighted trace of the confusion matrix

1 A

Accuracy = ZEvents Tr(C) (6)
1 #Species
= ZEew Z Gi (7)
S #Spfies TPR(i) - #Events with speciesi  (8)
#Events -
#Species
= Y TPR()-R(i) )

i

@ Where R(i) denotes the abundance ratio of species i (e.g. 20% protons)
@ The accuracy varies between 0: bad performance and 1: ideal performance
#Species

1
#Species : Z

I

@ Balanced Accuracy = TPR(i)
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Accuracy from the Example Analysis

MLP, using normalized features 1 - 4

Speciesl 77464

Species2

True label

83412

Speciesl Species2 SpeéiesS
Predicted label

80000
70000
60000
50000
40000
30000
20000

10000

True label

Linear Support Vector Machine, using normalized features 1 - 4

Speciesl {

0.94

Speciesl

Species2 Species3
Predicted label

@ 257k events with three species: R(1) = R(2) = R(3) =

@ Using the formulas from the previous slides yield:

Accuracy (MLP) = (77,464 + 78,362 + 83,412)/257k ~ 93%
Accuracy (LSVM) = 0.333:0.94 + 0.333:0.90 + 0.333:0.90 ~ 0.91%

= Obtain same values when using the accuracy function from scikit

Daniel Lersch (FSU)

September 21, 2020
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The Precision and F1-Score

@ The precision® can be thought of as 'cleanliness’ of the classified data set

#Events CORRECTLY identified as species i
#Events identified as species i

Precision for species i =

(10)

3Sometimes also referred to as purity
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The Precision and F1-Score

@ The precision® can be thought of as 'cleanliness’ of the classified data set
TPR(i
Precision for species i = T R((,I)) (10)
TPR(i) + 00 x FPR())

3Sometimes also referred to as purity
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The Precision and F1-Score

3

@ The precision® can be thought of as 'cleanliness’ of the classified data set

TPR(i)

TPR() + 752 x FPR(i)

Precision for species i =

(10)

@ The F1-Score is deduced from F-measure and folds the TPR together with the

P TPR() -Precison()
TPR(i) + Precision(i) (11)

F1-Score for species i = 2 -

@ Like the accuracy, these metrics also depend on the relative abundance R(7)

3Sometimes also referred to as purity
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The Precision and F1-Score

@ The precision® can be thought of as 'cleanliness’ of the classified data set

Precision for species i = 'I;PI:(}) (10)
TPR() + 752 x FPR(i)
@ The F1-Score is deduced from F-measure and folds the TPR together with the
purity
N TPR(i) - Precision(i)
F1-Score for species i = 2 - TR - P () (11)

@ Like the accuracy, these metrics also depend on the relative abundance R(7)

@ Both, precision and F1 show values between 0: bad performance and 1: ideal
performance

3Sometimes also referred to as purity
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The Matthews Correlation Coefficient (MCC)

@ Like the accuracy, the MCC can be computed from entries within the
(unnormalized) confusion matrix:*

Xk:;;(ckkclm — Ck/ka)
V;(; Cu)( X X Corr) - V;(; Ci)( X X Cor)

k'k I’ k'#k 1"

MCC =

(12)

@ In a very simplified picture, the MCC combines the true positive rate, false positive
rate and purity®
TPR(i) - TPR(j) — FPR(i) - FPR())
\/ TPR() . _TPR(j)

MCC (Binary Classification) = (13)

Precision(i)  Precision(j)

@ The MCC is a common / preferable choice for imbalanced data

@ Unlike the previously introduced metrics, the MMC might vary® between -1: bad
performance and 1: ideal performance

*Formula taken from wikipedia
5This is exact true for binary classification
®Different for binary or multiclass classification.
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Comparing Metrics for the Example Analysis

@ Compare performance metrics of differently trained neural networks and the linear
support vector machine on the given data set

Model H Precision (averaged) ‘ F1-Score (averaged) ‘ Accuracy ‘ MCC

MLP(1) 0.93 0.93 0.93 0.89
MLP(2) 0.92 0.92 0.92 0.88
MLP(3) 0.93 0.93 0.93 0.89

LSVM 0.91 0.91 0.91 0.87

MLP(1): Use all features for training
MLP(2): Use only features 1-4 for training
MLP(3): Use only normalized features 1-4 for training

@ Different versions of MLP show similar performance and are somewhat better than
the LSVM model
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Balanced vs. Imbalanced Data

@ Balanced data: R(/) Vi

@ Imbalanced data: 3i: R(/)

_ 1

~ #Species’

# #Splecies

@ TPR and FPR (and therefore the ROC-Curve) ideally” do not depend on balance
in data

@ BUT: Accuracy, Purity, MCC, F1-Score do® = Take into consideration when
evaluating your model(s) on different data sets

"Given sufficient statistics of course for each label and distribution
8By definition, because R is folded in.
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Imbalanced Toy Data

@ Generated toy data with imbalance between species

@ Applied MLP (trained on balanced datal) on different toy sets

1.000
—e— Precision

0.975{ —— F1-Score
—=— Accuracy
0.9501 _— McC

0.925

0.900

Metric

0.875

0.850

0.825

0'80{)/3 1/31/3 0.5/0.25/0.25 0.1/0.1/0.8 0.1/0.6/0.3
Imbalance: R(1) / R(2) / R(3)
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Which Metric to use?

@ As usual: It depends on...

. what you intend to find out about your classifier

> Are you interested in global performance? (e.g. accuracy)
> Do you need to know the performance for a certain species only? (e.g. precision)

imbalance in your data
. available statistics — e.g. ROC-Curve simply not available
@ But in general: It helps to compare different metrics

@ Do not trust single numbers only — also look at covariance matrix (your best
friend!) and the ROC-curve (if possible)
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Should | train on imbalanced Data?

@ Again, it depends on...

. what you want to do — Do you want to analyze “real” data with a known
imbalance — train your classifier appropriately

. the training data you have — might be highly imbalanced and you have no other
data

. the resources you have (time, computing power, etc.)

Best option (if resources available):

o
= Train on different data sets and compare performances <+ Systematic X-check
@ Sufficient (most of the time):

=

Train on balanced data — Let model pick up all feature distributions equally and
check if model generalizes well enough on imbalanced sets
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Summary: Metrics for labeled Data

@ TPR and FPR are the building blocks for evaluating a classification algorithm

@ Introduced a few (but not all) metrics

>

vVVYyyvYyVvyy

ROC-Curve
AUC
Accuracy
Precision
F1-Score
MCC

@ There are many more

@ Think about which information you need for a proper evaluation — Choose metric
accordingly
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Unlabeled Data

Data with
|:> CLASSIFIER :> discrimant/

@ Events are not labeled, i.e. the particle type is a priori not known
= The metrics introduced earlier are not directly applicable

@ However: One might have some measures to roughly define a particle species
(e.g. energy deposits in a detector)

@ |If the training data is unlabeled as well:

> Perform unsupervised training (e.g. clustering algorithms)
> Label data by yourself, e.g. autoencoder neural networks
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Example Analysis with unlabeled Toy Data

0.030

@ Suppose that our (balanced) toy data

0.025 has no labels

0.020 " ;1 5 Species 2 > No information which event

corresponds to which species
> Do not know the abundance of
each individual species

0.015

0.010

Variable 4

H
0.005:
@ The correlation between variable 3
and 4 suggests that we might perform
ey a cluster analysis — unsupervised
0.020 0.025 0.030 .
Variable 3 learni ng

0.000

~0.005 ="

—01)}8
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Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop

Example Analysis: kMeans-Clustering

104

B Cluster 1
Cluster 2
Cluster 3

[
o

@ Trained kMeans-algorithm with three
cluster centers and 300 iterations

Entries [a.u.]
=
o
R

@ Used variables 3 and 4 only

@ Compute distance to each cluster
— Our discriminant

-
<

109

0.02 0.03 0.04 0.05
Distance to Cluster

Variable 4

_ 2 | o W]
0'030.01 0. 00 0 01 0.02
Variable 3 Variable 1
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Example Analysis: kMeans-Clustering

104 B Cluster 1
Cluster 2
Cluster 3

@ Trained kMeans-algorithm with three

cluster centers and 300 iterations

[
o
©

Entries [a.u.]
=
o
R

@ Used variables 3 and 4 only

-
<

@ Compute distance to each cluster
— Our discriminant

=
o
°

0.02 0.03 0.04 0.05
Distance to Cluster

0.03 17.5
15.0
0.02 i Y
< : I ~12.5
@ 5 - o
b 53
3 oot 3100
s ( —‘-.I I-" ", S 75
L
0.00 p— 5.0
25
09%01 000 o001 o002 003 0

10
Variable 1

Variable 3

ALWAYS check the input features after classification
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Using Yields

0.01

- @9

Variable 4

0901 000 001 002 003
Variable 3

10
Variable 1

@ Could use correlations between variable 2 and 1 for further analysis <> They have

not been used for training

@ Red lines in top right panel indicate hypothetical selection criteria to extract yields

for each cluster / blob

@ Define metrics based on these yields
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Using Yields: Example from GlueX PID

@ Goal: Identify leptons in GlueX yp — e"e™ p data (measured — no labels)
@ Approaches: Al model and cut based analysis

@ Compare approaches by looking at dilepton mass® and determine signal (S) and
background (B) contributions

Calculate FOM (Figure Of Merit): S/+/S + B

From Al model: L(e-) >=0.7/L(e+) >= 0.7

140

120

101

Entries [a.u.]

8

=3

8

S

Signal
Background ~ pol(3) -tlll:

ﬂ%u“maﬂ

Pl

28 29 3 a1 82 33 34

M(e*,e) [GeV/c]

40,

20|

N[O T T [TI [T T T [TTT[TTT[TT

oo

°NOT part of the model input features
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Using Yields: Example from GlueX PID

@ Goal: Identify leptons in GlueX yp — e"e™ p data (measured — no labels)
@ Approaches: Al model and cut based analysis

@ Compare approaches by looking at dilepton mass® and determine signal (S) and
background (B) contributions

@ Calculate FOM (Figure Of Merit): S/+/S + B

S/VS+B  (cutbased analysis) S/\S+B  (Almodel)

E/p(+) € [0.9,1.0] L(e")20.9

E/p(+) & [0.85,1.05] L") 20.7

Elp(+) € [0.8,1.1] L(e) 205

Efp(+) € [0.8,1.2]

L(e")20.3

Elp(+) € [0.7,1.2) L(e*)=0.1

Le)20.1 L()203 L()205 LE)=07 L()=0.9

br s be, () P
”510.7,21 U*/o,g,ej (jsfﬂ.s,’] {}5/0,95, Us[tzg,o]
. 37, 1, .05 2

°NOT part of the model input features

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 41 / 47



Generalization and Stability |

@ Question: How well does the trained model generalize — Response on “unknown”
data

@ The model has been trained under certain conditions which might not be reflected
by the data we want to analyze
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Generalization and Stability |

@ Question: How well does the trained model generalize — Response on “unknown”
data

@ The model has been trained under certain conditions which might not be reflected
by the data we want to analyze

@ Approach: Use validation data

e Training examples
m New example

X X

Underfitting Good fit! Overfitting

Picture taken from Brenda Ngs introductory talk at the: deep learning for science school 2019
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Generalization and Stability |

@ Question: How well does the trained model generalize — Response on “unknown”

data

@ The model has been trained under certain conditions which might not be reflected

by the data we want to analyze

@ Approach: Use validation data

underfitting overfitting

validation error

error

Generalization Gap

SN O

training error

# Training Steps

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019
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Generalization and Stability |

@ Question: How well does the trained model generalize — Response on “unknown”
data

@ The model has been trained under certain conditions which might not be reflected
by the data we want to analyze

@ Approach: Use validation data

underfitting overfitting

validation error

Early
Stopping

l

error

training error

# Training Steps

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 42 / 47


https://sites.google.com/lbl.gov/dl4sci2019/agenda

Generalization and Stability Il

@ Question: How well does the trained model generalize — Response on “unknown” data

@ The model has been trained under certain conditions which might not be reflected by the
data we want to analyze
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Generalization and Stability Il

@ Question: How well does the trained model generalize — Response on “unknown” data

@ The model has been trained under certain conditions which might not be reflected by the
data we want to analyze

@ Approach: Apply smearing: features — features x Gauss(1,0) to training / validation
data and monitor performance

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 43 / 47



Generalization and Stability Il

@ Question: How well does the trained model generalize — Response on “unknown” data

@ The model has been trained under certain conditions which might not be reflected by the
data we want to analyze

@ Approach: Apply smearing: features — features X Gauss(1, §) to training / validation
data and monitor performance

@ Shown below: MLP accuracy on toy data for different &

0.90

0.85

Accuracy
o o
~ 2]
(S

©
9
o

0.65

0.60

0.00 0.05 0.10 0.15 0.20 0.25
Smearing 6
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Generalization and Stability Il

@ Question: How well does the trained model generalize — Response on “unknown” data

@ The model has been trained under certain conditions which might not be reflected by the
data we want to analyze

@ Approach: Apply smearing: features — features X Gauss(1, §) to training / validation
data and monitor performance

@ Shown below: MLP accuracy on toy data for different &

This might be
acceptable for
the ongoing

analysis

0.90

0.85p = =======

Accuracy
o o
~ 2]
(S

©
9
o

0.65

0.60

0.00 0.05 0.10 0.15 0.20 0.25
Smearing 6
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Summary and Outlook (Part I)

@ Introduced metrics to evaluate the performance of (any) classification algorithm
@ Different metrics provide different information

@ Choice of metrics depends on which question one tries to answer and the data set

> Global vs. individual performance (for one species)
> Labeled vs. unlabeled data
> Balanced vs. imbalanced data
@ Looked a distributed data only (no images), but the approaches shown here are
applicable to any data set / classification problem

@ Always:

> Use and compare different metrics

> Look at the classifier output distributions

> Check features before / after classification

> Have a critical view on your results <+ NEVER trust your classifier blindly

@ Second part of this lecture: hands-on session
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Part Il: Hands-On

Picture taken from: http://screenrant.com/things-you-did-not-know-about-wile-e-coyote/
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The (Toy) Data Set

@ The data (.csv files) are stored at the FSU cluster:
http://hadron.physics.fsu.edu/ dlersch/GlueX_PANDA_EIC_ML_Workshop/
@ The naming scheme for the files is:
hands on data P1 P2 P3.csv
where Pi refers to the relative abundance of species i
@ Example: hands on data 02 07 Ol.csv

— 20% of all particles in this data refer to species 1, 70% refer to species 2 and
10% refer to species 3
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Scripts and Tools

@ There are three options to join this hands-on
Option 1 (classic)

1. Go to:
http://hadron.physics.fsu.edu/~dlersch/GlueX_PANDA_EIC_ML_Workshop/

2. Download python scripts from the folder: Repl _Files

3. Run everything on your local machine / cluster / ...

Option 2 (fancy)

1. Go to:
http://hadron.physics.fsu.edu/"dlersch/GlueX_PANDA_EIC_ML_Workshop/

2. Download jupyter notebooks from the folder: Notebooks

3. Run everything on your local machine / Google collab / Binder / ....

Option 3 (easy) [Many thanks to Cristiano Fanelli for bringing this option up!]

1. Go to: http://repl.it/@daniel49/HandsOnSession
2. Click the Fork button
3. Follow instructions in main.py

@ Options 1 and 2 require python > 3.6 plus the corresponding libraries
@ Option 3 requires internet only

@ Material will be available for ~ 1 week
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