Particle Identification and Performance Evaluation

Daniel Lersch

September 21, 2020

dlersch@jlab.org

Daniel Lersch (FSU)

GlueX-EIC-PANDA ML Workshop

Overview

This lecture consists of two parts

- 1. Part: How to
 - i) Example analysis on a toy data set
 - ii) Definition and comparison of basic evaluation metrics

2. Part: Hands-On

- i) Perform your own analysis on different toy data sets
- ii) Train and evaluate your own classifier with scikit

This Lecture...

... will mainly focus on supervised learning with labeled data

- ... covers only a small fraction of all available classification metrics
- ... does NOT turn you into an AI specialist
- ... aims to give you a rough idea about particle identification with machine learning
- ... uses a generated and simple (in terms of complexity) data set
- ... will not deal with machine learning in great detail (done in "'ML for Beginners" by Thomas Stibor)
- ... includes material mainly from:
 - Wikipedia
 - Apache Spark Documentation
 - Scikit Documentation

 $\ldots\,$ most likely contains several errors \rightarrow please report them

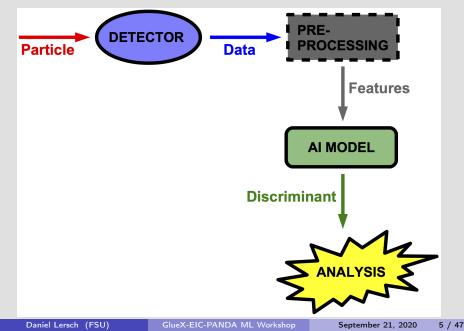
Part I: How to

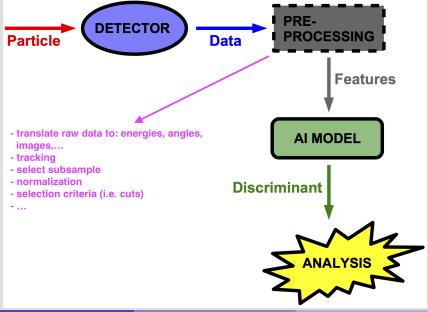
Picture taken from here

Daniel Lersch (FSU)

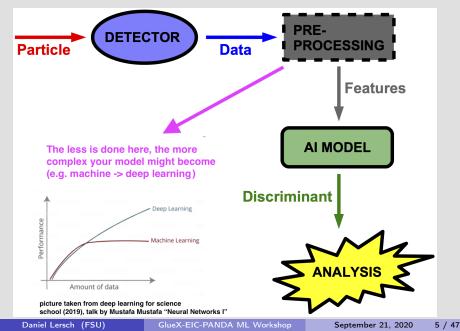
GlueX-EIC-PANDA ML Workshop

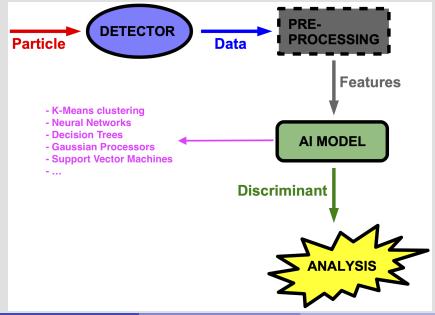
September 21, 2020 4 / 47



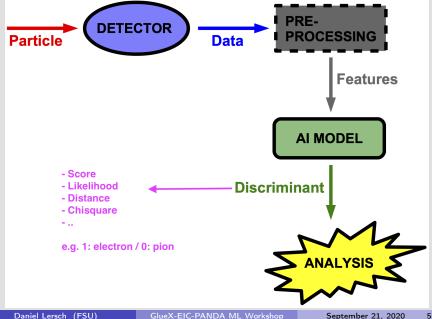


GlueX-EIC-PANDA ML Workshop





GlueX-EIC-PANDA ML Workshop



GlueX-EIC-PANDA ML Workshop

• Particle identification aims to solve a classification problem

- Particle identification aims to solve a classification problem
- The AI model (or classifier) simply represents a function fmodel

- Particle identification aims to solve a classification problem
- The AI model (or classifier) simply represents a function fmodel

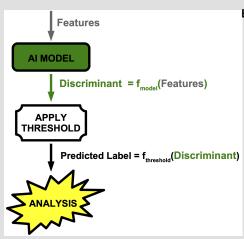
- *f_{model}* is determined by:
 - Choice of model / algorithm
 - Provided data
 - Training (conditions)

- Particle identification aims to solve a classification problem
- The AI model (or classifier) simply represents a function fmodel

- *f_{model}* is determined by:
 - Choice of model / algorithm
 - Provided data
 - Training (conditions)
- Need to judge quality of f_{model}
 - How well does f_{model} solve the underlying classification problem?
 - Can f_{model} be applied on data sets other than the training data?

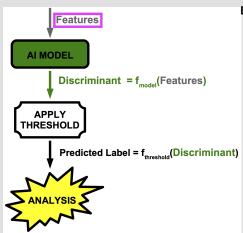
- Particle identification aims to solve a classification problem
- The AI model (or classifier) simply represents a function fmodel

- *f_{model}* is determined by:
 - Choice of model / algorithm
 - Provided data
 - Training (conditions)
- Need to judge quality of fmodel
 - How well does f_{model} solve the underlying classification problem?
 - Can f_{model} be applied on data sets other than the training data?
- \Rightarrow Need performance metrics to address these questions properly

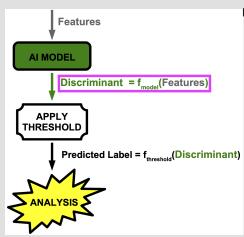


Example:

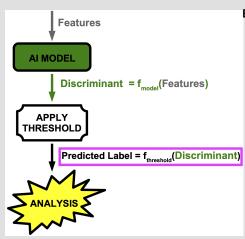
• One event with 2 possible particle types (e.g. 1 and 2)



- One event with 2 possible particle types (e.g. 1 and 2)
- Event is characterized by an *n*-dim feature vector \vec{v}_{feat}

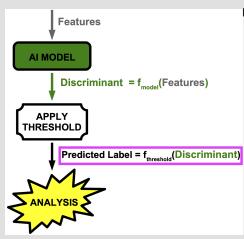


- One event with 2 possible particle types (e.g. 1 and 2)
- Event is characterized by an *n*-dim feature vector \vec{v}_{feat}
- Discriminant D:
 - $D = f_{model}(ec{v}_{feat}) \in \mathbb{R}$



- One event with 2 possible particle types (e.g. 1 and 2)
- Event is characterized by an *n*-dim feature vector \vec{v}_{feat}
- Discriminant D:
 - $D = f_{\textit{model}}(ec{v}_{\textit{feat}}) \in \mathbb{R}$
- Threshold function:

$$f_{threshold}(D,t) = egin{cases} 1, \ ext{if} \ D \geq t, \\ 2 \ ext{else} \end{cases}$$

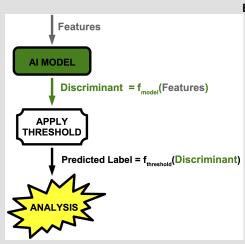


Example:

- One event with 2 possible particle types (e.g. 1 and 2)
- Event is characterized by an *n*-dim feature vector \vec{v}_{feat}
- Discriminant D:
 - $D = f_{\textit{model}}(ec{v}_{\textit{feat}}) \in \mathbb{R}$
- Threshold function:

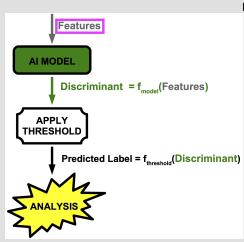
$$f_{threshold}(D,t) = egin{cases} 1, \ ext{if} \ D \geq t, \ 2 \ ext{else} \end{cases}$$

We find: f_{threshold}(D, 0.5) = 1
 ⇒ The event is labeled as particle type 1

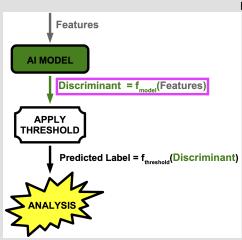


Example:

• One event with *m* possible particle types (e.g. 1, 2, 3,..., m)

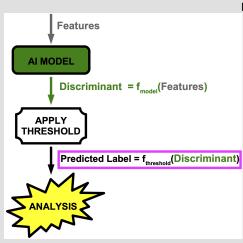


- One event with *m* possible particle types (e.g. 1, 2, 3,..., m)
- Event is characterized by an *n*-dim feature vector \vec{v}_{feat}



- One event with *m* possible particle types (e.g. 1, 2, 3,..., m)
- Event is characterized by an *n*-dim feature vector \vec{v}_{feat}
- Discriminant \vec{D} :

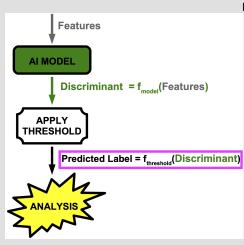
$$\left(\begin{array}{c} D_{1} \\ \vdots \\ D_{m} \end{array}\right) = \vec{D} = f_{model}(\vec{v}_{feat}) \in \mathbb{R}^{m}$$



- One event with *m* possible particle types (e.g. 1, 2, 3,..., m)
- Event is characterized by an *n*-dim feature vector \vec{v}_{feat}
- Discriminant \vec{D} :

$$\left(\begin{array}{c} D_1\\ \vdots\\ D_m \end{array}\right) = \vec{D} = f_{model}(\vec{v}_{feat}) \in \mathbb{R}^m$$

• Threshold function:
$$f_{threshold}(\vec{D}) \equiv i \text{ for } D_i = max[\vec{D}]$$



- One event with *m* possible particle types (e.g. 1, 2, 3,..., m)
- Event is characterized by an *n*-dim feature vector $\vec{v_{feat}}$
- Discriminant \vec{D} :

$$\left(\begin{array}{c} D_1\\ \vdots\\ D_m \end{array}\right) = \vec{D} = f_{model}(\vec{v}_{feat}) \in \mathbb{R}^m$$

- Threshold function: $f_{threshold}(\vec{D}) \equiv i \text{ for } D_i = max[\vec{D}]$
- We find: f_{threshold}(D
) = 2
 ⇒ The event is labeled as particle
 type 2

Threshold Functions

- Different threshold functions available \leftrightarrow Binary / Multiclass classification ?
- Shown below are three examples of possible threshold functions:

i)
$$f_{threshold}(\vec{D}) \equiv i$$
 for $D_i = max[\vec{D}]$

ii)
$$f_{threshold}(\vec{D},t) \equiv i \text{ for } D_i = max[\vec{D} - t \cdot \mathbf{1}]$$

iii)
$$f_{threshold}(\vec{D},t) \equiv i$$
 for $D_i = max[rac{1}{t} \cdot \vec{D}]$

#Events	#Species	#Features	Labeled ?
$\sim 257\mathrm{k}$	3	6	yes

• Throughout this lecture (and the hands-on session) we will look at a toy data set:

#Events	#Species	#Features	Labeled ?
$\sim 257\mathrm{k}$	3	6	yes

• Want to understand / explain PID analysis steps, with the help of this toy data

#Events	#Species	#Features	Labeled ?
$\sim 257\mathrm{k}$	3	6	yes

- Want to understand / explain PID analysis steps, with the help of this toy data
- Goal: Classify events in the data, using the provided features

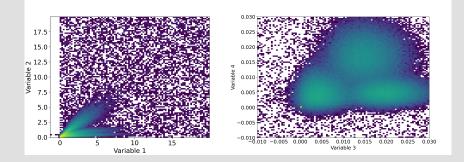
#Events	#Species	#Features	Labeled ?
$\sim 257\mathrm{k}$	3	6	yes

- Want to understand / explain PID analysis steps, with the help of this toy data
- Goal: Classify events in the data, using the provided features
- Approach: Use scikit machine learning algorithm(s)

#Events	#Species	#Features	Labeled ?
$\sim 257\mathrm{k}$	3	6	yes

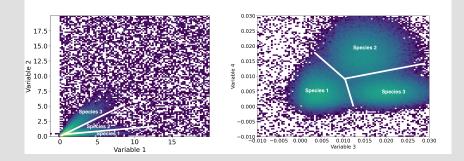
- Want to understand / explain PID analysis steps, with the help of this toy data
- Goal: Classify events in the data, using the provided features
- Approach: Use scikit machine learning algorithm(s)
- Issue: Evaluate performance of the algorithm(s) properly

Example Analysis: The Data Set I



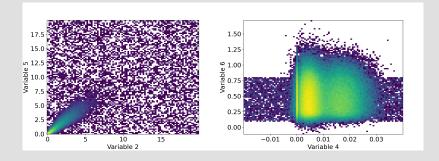
- This is the first thing you should do: Look at your input features!
- ullet Variables show different correlations, depending on the species ightarrow Ideal for PID
- Variables show different ranges

Example Analysis: The Data Set I



- This is the first thing you should do: Look at your input features!
- $\bullet\,$ Variables show different correlations, depending on the species \rightarrow Ideal for PID
- Variables show different ranges

Example Analysis: The Data Set II



- This is the first thing you should do: Look at your input features!
- $\bullet\,$ Variables show different correlations, depending on the species \rightarrow Ideal for PID
- Variables show different ranges
- Variable 5 \sim Variable 2
- Variable 6 is just a flat random distribution

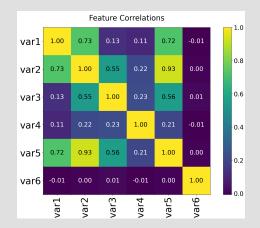
Example Analysis: The Data Set III

• This data set is labeled:

Species	Label
1	0
2	1
3	2

- Labeled data allows to perform supervised training
- But this data set is designed such that one might perform unsupervised learning as well (e.g. clustering)

Example Analysis: The Correlation Matrix

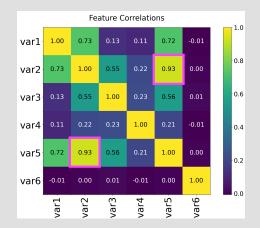


• Different methods to calculate feature correlations, e.g. Spearman vs. Pearson

Off-diagonal elements...

- ... close to one indicate redundancy \rightarrow no information gain
- ... close to zero indicate no correlation

Example Analysis: The Correlation Matrix

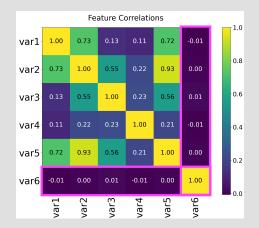


• Different methods to calculate feature correlations, e.g. Spearman vs. Pearson

Off-diagonal elements...

- ... close to one indicate redundancy \rightarrow no information gain
- ... close to zero indicate no correlation

Example Analysis: The Correlation Matrix



• Different methods to calculate feature correlations, e.g. Spearman vs. Pearson

Off-diagonal elements...

- ... close to one indicate redundancy \rightarrow no information gain
- ... close to zero indicate no correlation

#Inputs	#Hidden Layers	#Neurons in Hidden Layer	#Outputs
4	1	5	3

 $\bullet \ \ \, \text{Use labels in data} \rightarrow \text{supervised training of MLP}$

#Inputs	#Hidden Layers	#Neurons in Hidden Layer	#Outputs
4	1	5	3

• Used 25% of entire data for validation (explained later in detail)

15 / 47

 $\bullet \ \ \, \text{Use labels in data} \rightarrow \text{supervised training of MLP}$

#Inputs	#Hidden Layers	#Neurons in Hidden Layer	#Outputs
4	1	5	3

- Used 25% of entire data for validation (explained later in detail)
- Ignored variable 5 and 6

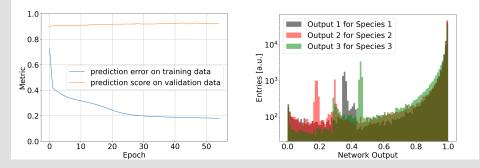
15 / 47

#Inputs	#Hidden Layers	#Neurons in Hidden Layer	#Outputs
4	1	5	3

- Used 25% of entire data for validation (explained later in detail)
- Ignored variable 5 and 6
- Pre-processing: Normalized remaining input features between 0 and 1

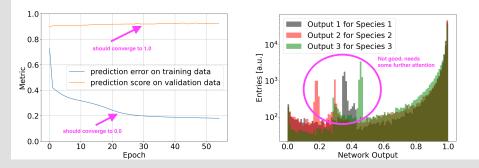
#Inputs	#Hidden Layers	#Neurons in Hidden Layer	#Outputs
4	1	5	3

- Used 25% of entire data for validation (explained later in detail)
- Ignored variable 5 and 6
- Pre-processing: Normalized remaining input features between 0 and 1
- First things to check right after training: training curve(s) and output distributions



#Inputs	#Hidden Layers	#Neurons in Hidden Layer	#Outputs
4	1	5	3

- Used 25% of entire data for validation (explained later in detail)
- Ignored variable 5 and 6
- Pre-processing: Normalized remaining input features between 0 and 1
- First things to check right after training: training curve(s) and output distributions



Example Analysis: Using the MLP

• Applied MLP on entire toy data:

#Events	Labeled as
$\sim 85{ m k}$	1
$\sim 85{ m k}$	2
$\sim 87\mathrm{k}$	3

- \rightarrow Is this good / bad?
 - Need metrics to judge performance properly
 - $\bullet~$ Our data is labeled $\rightarrow~$ impact on metrics we can use

Labeled Data

- Events are tagged according to particle type (e.g. 1: e^- , 2: π^- , ...)
- Consequently, one knows:
 - i) The abundance of each particle type in the entire data set (e.g. 10 k e^-)
 - ii) The relative abundance between the different particles (e.g. $N(e^{-}) = 0.1N(\pi^{-})$)
- Most common training procedure used here is supervised training (one could perform unsupervised training of course)

True and False Positive Rate I The building Blocks of Performance Evaluation

True Positive Rate(i) =
$$\frac{\#$$
Events CORRECTLY identified as species i
#Events labeled as species i

False Positive Rate(i) =
$$\frac{\#$$
Events FALSELY identified as species i
 $\#$ Events NOT labeled as species i

(3)

(2)

True and False Positive Rate I The building Blocks of Performance Evaluation

 $\text{True Positive Rate}(i) = \frac{\sum_{j=1}^{\#\text{Events}} \delta(\text{Predicted Label } j - i) \times \delta(\text{True Label } j - i)}{\sum_{j=1}^{\#\text{Events}} \delta(\text{True Label } j - i)}$ (2)

False Positive Rate(i) =
$$\frac{\sum_{j=1}^{\text{\#Events}} \delta(\text{Predicted Label } j - i) \times [1.0 - \delta(\text{True Label } j - i)]}{\sum_{j=1}^{\text{\#Events}} [1.0 - \delta(\text{True Label } j - i)]}$$
(3)

September 21, 2020

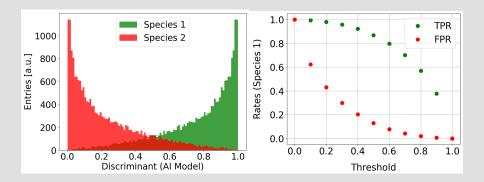
18 / 47

True and False Positive Rate II The building Blocks of Performance Evaluation

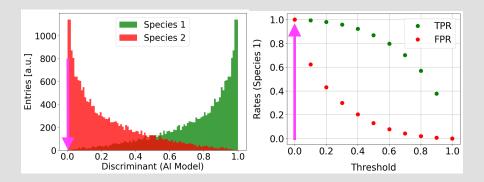
- Analogously, one can define the True Negative and False Negative Rate
- The True Positive Rate (TPR) and False Negative Rate (FNR) are...
 - \ldots universal, i.e. they do not 1 depend on relative abundances between the different particle types
 - ... characteristic for the used classifier
- The most important evaluation metrics are directly derived from the TPR and FPR

¹Given enough statistics for each species and each feature distribution!

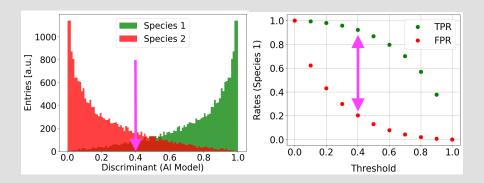
- Suppose a binary classification problem with two particle species (1 and 2)
- Trained AI Model to solve this problem
- Basic Question: What is the model actually doing?
- Approach: Perform a threshold scan



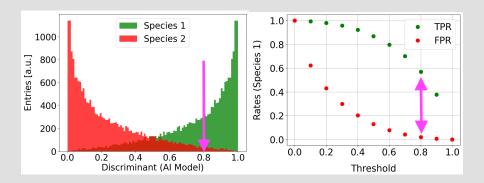
- Suppose a binary classification problem with two particle species (1 and 2)
- Trained AI Model to solve this problem
- Basic Question: What is the model actually doing?
- Approach: Perform a threshold scan

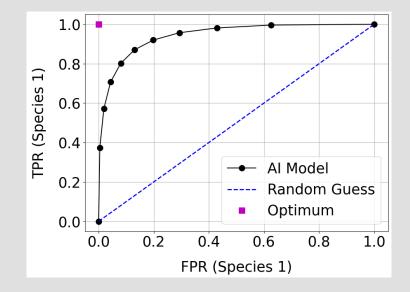


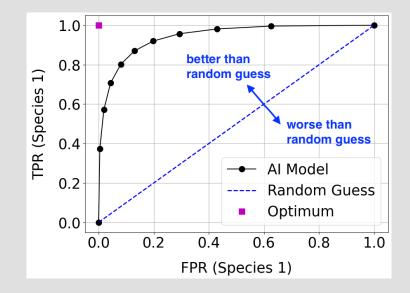
- Suppose a binary classification problem with two particle species (1 and 2)
- Trained AI Model to solve this problem
- Basic Question: What is the model actually doing?
- Approach: Perform a threshold scan

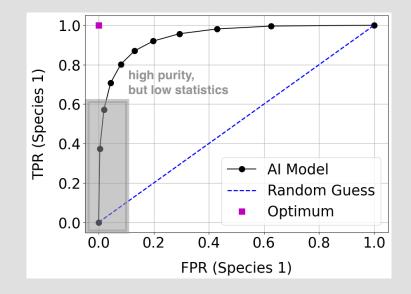


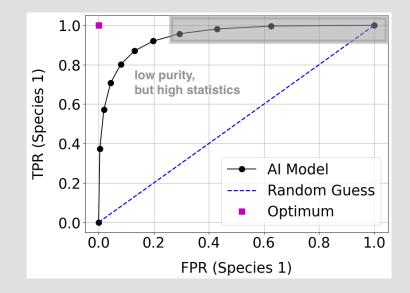
- Suppose a binary classification problem with two particle species (1 and 2)
- Trained AI Model to solve this problem
- Basic Question: What is the model actually doing?
- Approach: Perform a threshold scan





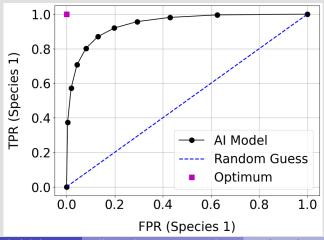




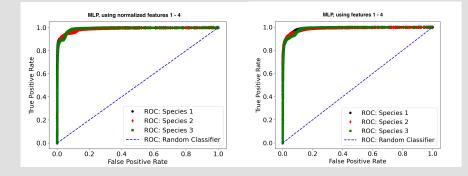


AUC - Area Under ROC

- Area under the ROC-Curve is another performance metric
- AUC = $1.0 \leftrightarrow \text{Optimal classifier}$
- AUC = $0.0 \leftrightarrow Bad$ classifier
- Found here: AUC = 0.94

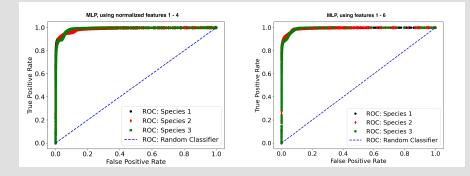


Comparing ROC-Curves for different Training Setups



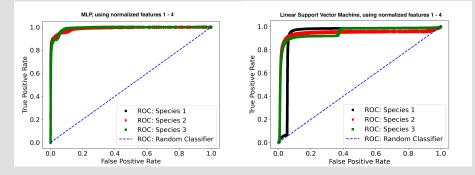
- Identify three particle species using differently trained MLP models
- ROC-curves allow to compare the classification performance between
 - i) Particle species
 - ii) Different models
- AUC for all curves shown here ~ 0.99

Comparing ROC-Curves for different Training Setups



- Identify three particle species using differently trained MLP models
- ROC-curves allow to compare the classification performance between
 - i) Particle species
 - ii) Different models
- AUC for all curves shown here ~ 0.99

Comparing ROC-Curves for different Classifier



- Identify three particle species using two different classification models
- ROC-curves allow to compare the classification performance between
 - i) Particle species
 - ii) Different models
- AUC(MLP) ~ 0.99 / AUC(lin. svm) ~ 0.93

The Confusion Matrix

• Right after the ROC, the second most important monitoring tool

The Confusion Matrix

- Right after the ROC, the second most important monitoring tool
- Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are directly derived from this matrix

The Confusion Matrix

- Right after the ROC, the second most important monitoring tool
- Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are directly derived from this matrix
- The elements in the confusion matrix \hat{C} are defined² as:

$$c_{ij}(t) \equiv \sum_{k=0}^{N-1} \delta(L_{true,k} - \ell_i) \times \delta(L_{pred,k}(t) - \ell_j)$$

$$\delta(x) = \begin{cases} 1, & \text{if } x = 0, \\ 0, & \text{else} \end{cases}$$
(5)

• With:

$$\begin{array}{c|c} L_{true,k} & \text{true label of event k} \\ L_{pred,k}(t) & \text{predicted label of event k, using the threshold t} \\ \ell_i & \text{the label corresponding to species } i \end{array}$$

• NOTE: The definition of the above equation depends on which axis holds the true / predicted label

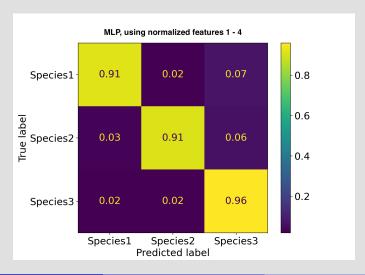
²Directly derived from TPR and FPR

Daniel Lersch (FSU)

GlueX-EIC-PANDA ML Workshop

Confusion Matrix from the Example Analysis

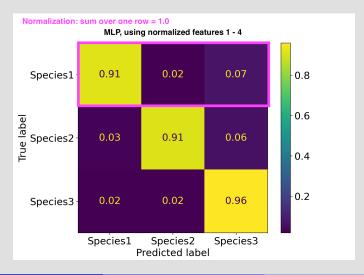
- Shown below is the confusion matrix for a neural network classifying three particle species (see previous slides)
- Ideally: All diagonal elements should be one and all off-diagonal elements should be zero



Daniel Lersch (FSU)

Confusion Matrix from the Example Analysis

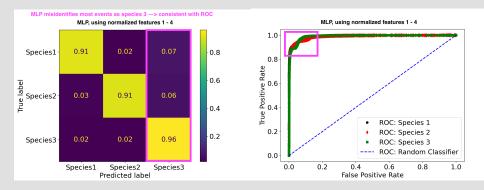
- Shown below is the confusion matrix for a neural network classifying three particle species (see previous slides)
- Ideally: All diagonal elements should be one and all off-diagonal elements should be zero



Daniel Lersch (FSU)

Confusion Matrix from the Example Analysis

- Shown below is the confusion matrix for a neural network classifying three particle species (see previous slides)
- Ideally: All diagonal elements should be one and all off-diagonal elements should be zero



 \Rightarrow Always check for consistency between different metrics!

Daniel Lersch (FSU)

GlueX-EIC-PANDA ML Workshop

September 21, 2020 26 / 47

Accuracy
$$\equiv \frac{1}{\#\text{Events}} Tr(\hat{C})$$
 (6)

Accuracy
$$\equiv \frac{1}{\#\text{Events}} Tr(\hat{C})$$
 (6)
$$= \frac{1}{\#\text{Events}} \sum_{i}^{\#\text{Species}} c_{ii}$$
 (7)

Accuracy
$$\equiv \frac{1}{\#\text{Events}} Tr(\hat{C})$$
 (6)
 $= \frac{1}{\#\text{Events}} \sum_{i}^{\#\text{Species}} c_{ii}$ (7)
 $= \frac{1}{\#\text{Events}} \sum_{i}^{\#\text{Species}} TPR(i) \cdot \#\text{Events with species i}$ (8)

Д

ccuracy
$$\equiv \frac{1}{\#\text{Events}} Tr(\hat{C})$$
 (6)
 $= \frac{1}{\#\text{Events}} \sum_{i}^{\#\text{Species}} c_{ii}$ (7)
 $= \frac{1}{\#\text{Events}} \sum_{i}^{\#\text{Species}} TPR(i) \cdot \#\text{Events with species i}$ (8)
 $= \sum_{i}^{\#\text{Species}} TPR(i) \cdot R(i)$ (9)

• The accuracy can be calculated from the weighted trace of the confusion matrix

Accuracy
$$\equiv \frac{1}{\#\text{Events}} Tr(\hat{C})$$
(6)
$$= \frac{1}{\#\text{Events}} \sum_{i}^{\#\text{Species}} c_{ii}$$
(7)
$$= \frac{1}{\#\text{Events}} \sum_{i}^{\#\text{Species}} TPR(i) \cdot \#\text{Events with species i}$$
(8)
$$= \sum_{i}^{\#\text{Species}} TPR(i) \cdot R(i)$$
(9)

• Where R(i) denotes the abundance ratio of species i (e.g. 20% protons)

• The accuracy can be calculated from the weighted trace of the confusion matrix

Accuracy
$$\equiv \frac{1}{\#\text{Events}} Tr(\hat{C})$$
(6)
$$= \frac{1}{\#\text{Events}} \sum_{i}^{\#\text{Species}} c_{ii}$$
(7)
$$= \frac{1}{\#\text{Events}} \sum_{i}^{\#\text{Species}} TPR(i) \cdot \#\text{Events with species i}$$
(8)
$$= \sum_{i}^{\#\text{Species}} TPR(i) \cdot R(i)$$
(9)

• Where R(i) denotes the abundance ratio of species i (e.g. 20% protons)

• The accuracy varies between 0: bad performance and 1: ideal performance

The Accuracy

• The accuracy can be calculated from the weighted trace of the confusion matrix

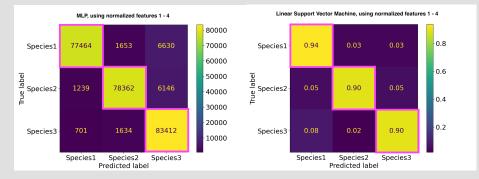
Accuracy
$$\equiv \frac{1}{\#\text{Events}} Tr(\hat{C})$$
(6)
$$= \frac{1}{\#\text{Events}} \sum_{i}^{\#\text{Species}} c_{ii}$$
(7)
$$= \frac{1}{\#\text{Events}} \sum_{i}^{\#\text{Species}} TPR(i) \cdot \#\text{Events with species i}$$
(8)
$$= \sum_{i}^{\#\text{Species}} TPR(i) \cdot R(i)$$
(9)

• Where R(i) denotes the abundance ratio of species i (e.g. 20% protons)

• The accuracy varies between 0: bad performance and 1: ideal performance

• Balanced Accuracy =
$$\frac{1}{\#\text{Species}} \cdot \sum_{i}^{\#\text{Species}} TPR(i)$$

Accuracy from the Example Analysis



- 257 k events with three species: $R(1) = R(2) = R(3) = \frac{1}{3}$
- Using the formulas from the previous slides yield: Accuracy (MLP) = $(77, 464 + 78, 362 + 83, 412)/257 \text{ k} \approx 93\%$ Accuracy (LSVM) = $0.333 \cdot 0.94 + 0.333 \cdot 0.90 + 0.333 \cdot 0.90 \approx 0.91\%$
- $\Rightarrow~$ Obtain same values when using the accuracy function from scikit

GlueX-EIC-PANDA ML Workshop

• The precision³ can be thought of as 'cleanliness' of the classified data set

Precision for species $i \equiv \frac{\#\text{Events CORRECTLY identified as species }i}{\#\text{Events identified as species }i}$ (10)

³Sometimes also referred to as purity

Daniel Lersch (FSU)

GlueX-EIC-PANDA ML Workshop

• The precision³ can be thought of as 'cleanliness' of the classified data set

Precision for species
$$i \equiv \frac{\text{TPR}(i)}{\text{TPR}(i) + \frac{1 - R(i)}{R(i)} \times \text{FPR}(i)}$$
 (10)

³Sometimes also referred to as purity

• The precision³ can be thought of as 'cleanliness' of the classified data set

Precision for species
$$i \equiv \frac{\text{TPR}(i)}{\text{TPR}(i) + \frac{1 - R(i)}{R(i)} \times \text{FPR}(i)}$$
 (10)

• The F1-Score is deduced from F-measure and folds the TPR together with the purity F1-Score for species $i \equiv 2 \cdot \frac{\text{TPR}(i) \cdot \text{Precision}(i)}{\text{TPR}(i) + \text{Precision}(i)}$ (11)

• Like the accuracy, these metrics also depend on the relative abundance R(i)

³Sometimes also referred to as purity

• The precision³ can be thought of as 'cleanliness' of the classified data set

Precision for species
$$i \equiv \frac{\text{TPR}(i)}{\text{TPR}(i) + \frac{1 - R(i)}{R(i)} \times \text{FPR}(i)}$$
 (10)

• The F1-Score is deduced from F-measure and folds the TPR together with the purity F1-Score for species $i \equiv 2 \cdot \frac{\text{TPR}(i) \cdot \text{Precision}(i)}{\text{TPR}(i) + \text{Precision}(i)}$ (11)

- Like the accuracy, these metrics also depend on the relative abundance R(i)
- Both, precision and F1 show values between 0: bad performance and 1: ideal performance

³Sometimes also referred to as purity

The Matthews Correlation Coefficient (MCC)

• Like the accuracy, the MCC can be computed from entries within the (unnormalized) confusion matrix:⁴

$$\mathsf{MCC} = \frac{\sum\limits_{k}\sum\limits_{l}\sum\limits_{m} (C_{kk}C_{lm} - C_{kl}C_{mk})}{\sqrt{\sum\limits_{k} (\sum\limits_{l} C_{kl}) (\sum\limits_{k' \neq k}\sum\limits_{l'} C_{k'l'})} \cdot \sqrt{\sum\limits_{k} (\sum\limits_{l} C_{lk}) (\sum\limits_{k' \neq k}\sum\limits_{l'} C_{k'l'})}$$
(12)

 $\bullet\,$ In a very simplified picture, the MCC combines the true positive rate, false positive rate and purity^5

$$MCC \text{ (Binary Classification)} = \frac{\text{TPR}(i) \cdot \text{TPR}(j) - \text{FPR}(i) \cdot \text{FPR}(j)}{\sqrt{\frac{\text{TPR}(i)}{\text{Precision}(i)} \cdot \frac{\text{TPR}(j)}{\text{Precision}(j)}}}$$
(13)

- The MCC is a common / preferable choice for imbalanced data
- Unlike the previously introduced metrics, the MMC might vary⁶ between -1: bad performance and 1: ideal performance

⁴Formula taken from wikipedia

⁵This is exact true for binary classification

⁶Different for binary or multiclass classification.

Daniel Lersch (FSU)

GlueX-EIC-PANDA ML Workshop

Comparing Metrics for the Example Analysis

• Compare performance metrics of differently trained neural networks and the linear support vector machine on the given data set

Model	Precision (averaged)	F1-Score (averaged)	Accuracy	MCC
MLP(1)	0.93	0.93	0.93	0.89
MLP(2)	0.92	0.92	0.92	0.88
MLP(3)	0.93	0.93	0.93	0.89
LSVM	0.91	0.91	0.91	0.87

- MLP(1): Use all features for training
- MLP(2): Use only features 1-4 for training
- MLP(3): Use only normalized features 1-4 for training
- Different versions of MLP show similar performance and are somewhat better than the LSVM model

Balanced vs. Imbalanced Data

- Balanced data: $R(i) = \frac{1}{\# \text{Species}}, \forall i$
- Imbalanced data: $\exists i : R(i) \neq \frac{1}{\#\text{Species}}$
- TPR and FPR (and therefore the ROC-Curve) ideally⁷ do not depend on balance in data
- BUT: Accuracy, Purity, MCC, F1-Score do⁸ ⇒ Take into consideration when evaluating your model(s) on different data sets

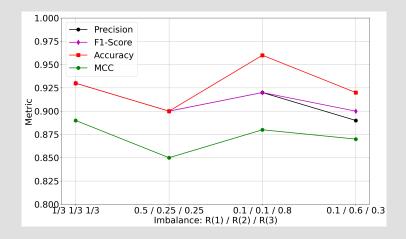
Daniel Lersch (FSU)

GlueX-EIC-PANDA ML Workshop

⁷Given sufficient statistics of course for each label and distribution ⁸By definition, because R is folded in.

Imbalanced Toy Data

- Generated toy data with imbalance between species
- Applied MLP (trained on balanced data!) on different toy sets



Which Metric to use?

- As usual: It depends on...
- ... what you intend to find out about your classifier
 - Are you interested in global performance? (e.g. accuracy)
 - ▶ Do you need to know the performance for a certain species only? (e.g. precision)
- ... imbalance in your data
- ... available statistics ightarrow e.g. ROC-Curve simply not available
- But in general: It helps to compare different metrics
- Do not trust single numbers only \rightarrow also look at covariance matrix (your best friend!) and the ROC-curve (if possible)

Should I train on imbalanced Data?

- Again, it depends on...
- ... what you want to do \to Do you want to analyze "real" data with a known imbalance \to train your classifier appropriately
- $\ldots\,$ the training data you have \rightarrow might be highly imbalanced and you have no other data
- ... the resources you have (time, computing power, etc.)
- Best option (if resources available):
- $\Rightarrow~$ Train on different data sets and compare performances $\leftrightarrow~$ Systematic X-check
- Sufficient (most of the time):
- $\Rightarrow \mbox{ Train on balanced data} \rightarrow \mbox{ Let model pick up all feature distributions equally and check if model generalizes well enough on imbalanced sets}$

Summary: Metrics for labeled Data

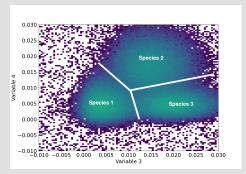
• TPR and FPR are the building blocks for evaluating a classification algorithm

- Introduced a few (but not all) metrics
 - ROC-Curve
 - AUC
 - Accuracy
 - Precision
 - F1-Score
 - MCC
- There are many more
- $\bullet\,$ Think about which information you need for a proper evaluation \to Choose metric accordingly

Unlabeled Data

- Events are not labeled, i.e. the particle type is a priori not known
- \Rightarrow The metrics introduced earlier are not directly applicable
 - However: One might have some measures to roughly define a particle species (e.g. energy deposits in a detector)
 - If the training data is unlabeled as well:
 - Perform unsupervised training (e.g. clustering algorithms)
 - Label data by yourself, e.g. autoencoder neural networks

Example Analysis with unlabeled Toy Data

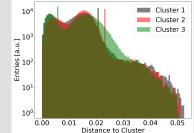


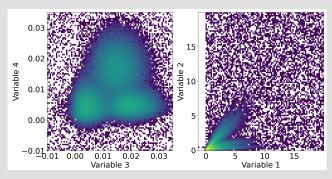
- Suppose that our (balanced) toy data has no labels
 - No information which event corresponds to which species
 - Do not know the abundance of each individual species
- The correlation between variable 3 and 4 suggests that we might perform a cluster analysis → unsupervised learning

38 / 47

Example Analysis: kMeans-Clustering

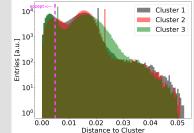
- Trained kMeans-algorithm with three cluster centers and 300 iterations
- Used variables 3 and 4 only
- Compute distance to each cluster \rightarrow Our discriminant

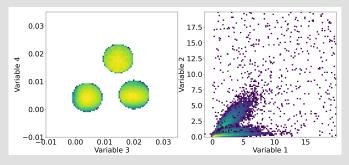




Example Analysis: kMeans-Clustering

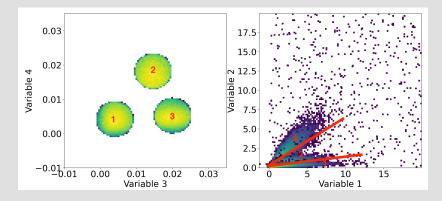
- Trained kMeans-algorithm with three cluster centers and 300 iterations
- Used variables 3 and 4 only
- Compute distance to each cluster \rightarrow Our discriminant





ALWAYS check the input features after classification

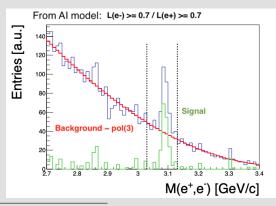
Using Yields



- Could use correlations between variable 2 and 1 for further analysis \leftrightarrow They have not been used for training
- Red lines in top right panel indicate hypothetical selection criteria to extract yields for each cluster / blob
- Define metrics based on these yields

Using Yields: Example from GlueX PID

- Goal: Identify leptons in GlueX $\gamma p \rightarrow e^+ e^- p$ data (measured \rightarrow no labels)
- Approaches: AI model and cut based analysis
- Compare approaches by looking at dilepton mass⁹ and determine signal (S) and background (B) contributions
- Calculate FOM (Figure Of Merit): $S/\sqrt{S+B}$



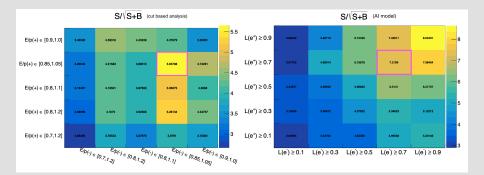
⁹NOT part of the model input features

Daniel Lersch (FSU)

GlueX-EIC-PANDA ML Workshop

Using Yields: Example from GlueX PID

- Goal: Identify leptons in GlueX $\gamma p
 ightarrow e^+e^-p$ data (measured ightarrow no labels)
- Approaches: AI model and cut based analysis
- Compare approaches by looking at dilepton mass⁹ and determine signal (S) and background (B) contributions
- Calculate FOM (Figure Of Merit): $S/\sqrt{S+B}$

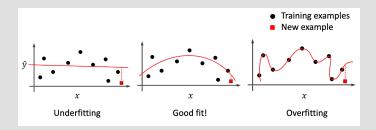


⁹NOT part of the model input features

41 / 47

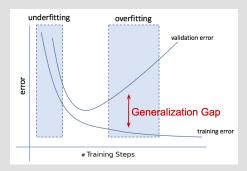
- $\bullet~$ Question: How well does the trained model generalize \rightarrow Response on "unknown" data
- The model has been trained under certain conditions which might not be reflected by the data we want to analyze

- $\bullet~$ Question: How well does the trained model generalize \rightarrow Response on "unknown" data
- The model has been trained under certain conditions which might not be reflected by the data we want to analyze
- Approach: Use validation data



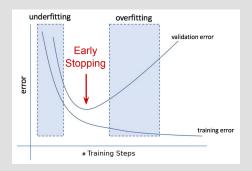
Picture taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

- \bullet Question: How well does the trained model generalize \rightarrow Response on "unknown" data
- The model has been trained under certain conditions which might not be reflected by the data we want to analyze
- Approach: Use validation data



Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

- $\bullet~$ Question: How well does the trained model generalize \rightarrow Response on "unknown" data
- The model has been trained under certain conditions which might not be reflected by the data we want to analyze
- Approach: Use validation data

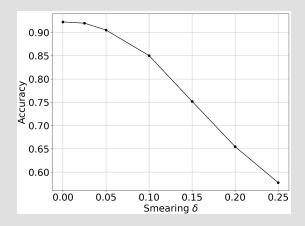


Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

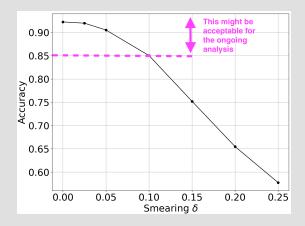
- Question: How well does the trained model generalize \rightarrow Response on "unknown" data
- The model has been trained under certain conditions which might not be reflected by the data we want to analyze

- Question: How well does the trained model generalize \rightarrow Response on "unknown" data
- The model has been trained under certain conditions which might not be reflected by the data we want to analyze
- Approach: Apply smearing: features \mapsto features \times Gauss $(1, \delta)$ to training / validation data and monitor performance

- Question: How well does the trained model generalize \rightarrow Response on "unknown" data
- The model has been trained under certain conditions which might not be reflected by the data we want to analyze
- Approach: Apply smearing: features \mapsto features \times Gauss(1, δ) to training / validation data and monitor performance
- Shown below: MLP accuracy on toy data for different δ



- Question: How well does the trained model generalize \rightarrow Response on "unknown" data
- The model has been trained under certain conditions which might not be reflected by the data we want to analyze
- Approach: Apply smearing: features \mapsto features \times Gauss(1, δ) to training / validation data and monitor performance
- Shown below: MLP accuracy on toy data for different δ



Summary and Outlook (Part I)

- Introduced metrics to evaluate the performance of (any) classification algorithm
- Different metrics provide different information
- Choice of metrics depends on which question one tries to answer and the data set
 - Global vs. individual performance (for one species)
 - Labeled vs. unlabeled data
 - Balanced vs. imbalanced data
- Looked a distributed data only (no images), but the approaches shown here are applicable to any data set / classification problem

Always:

- Use and compare different metrics
- Look at the classifier output distributions
- Check features before / after classification
- $\blacktriangleright \text{ Have a critical view on your results} \leftrightarrow \text{NEVER trust your classifier blindly}$
- Second part of this lecture: hands-on session

Part II: Hands-On

Picture taken from: http://screenrant.com/things-you-did-not-know-about-wile-e-coyote/

Daniel Lersch (FSU)

GlueX-EIC-PANDA ML Workshop

September 21, 2020 45 / 47

The (Toy) Data Set

• The data (.csv files) are stored at the FSU cluster:

http://hadron.physics.fsu.edu/~dlersch/GlueX_PANDA_EIC_ML_Workshop/

• The naming scheme for the files is:

hands_on_data_P1_P2_P3.csv

where Pi refers to the relative abundance of species i

• Example: hands_on_data_02_07_01.csv

 \rightarrow 20% of all particles in this data refer to species 1, 70% refer to species 2 and 10% refer to species 3

Scripts and Tools

• There are three options to join this hands-on

Option 1 (classic)

1. Go to:

http://hadron.physics.fsu.edu/~dlersch/GlueX_PANDA_EIC_ML_Workshop/

- 2. Download python scripts from the folder: Repl_Files
- 3. Run everything on your local machine / cluster / ...

Option 2 (fancy)

1. Go to:

http://hadron.physics.fsu.edu/~dlersch/GlueX_PANDA_EIC_ML_Workshop/

- 2. Download jupyter notebooks from the folder: Notebooks
- 3. Run everything on your local machine / Google collab / Binder / \dots

Option 3 (easy) [Many thanks to Cristiano Fanelli for bringing this option up!]

- 1. Go to: http://repl.it/@daniel49/HandsOnSession
- 2. Click the Fork button
- 3. Follow instructions in main.py
- Options 1 and 2 require python \geq 3.6 plus the corresponding libraries
- Option 3 requires internet only
- Material will be available for ~ 1 week