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Overview

This lecture consists of two parts

1. Part: How to

i) Example analysis on a toy data set
ii) Definition and comparison of basic evaluation metrics

2. Part: Hands-On

i) Perform your own analysis on different toy data sets
ii) Train and evaluate your own classifier with scikit
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This Lecture...

... will mainly focus on supervised learning with labeled data

... covers only a small fraction of all available classification metrics

... does NOT turn you into an AI specialist

... aims to give you a rough idea about particle identification with machine learning

... uses a generated and simple (in terms of complexity) data set

... will not deal with machine learning in great detail (done in ”‘ML for Beginners“ by
Thomas Stibor)

... includes material mainly from:
I Wikipedia
I Apache Spark Documentation
I Scikit Documentation

... most likely contains several errors → please report them
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www.wikipedia.com
https://spark.apache.org/docs/latest/mllib-evaluation-metrics.html
https://scikit-learn.org/stable/


Part I: How to

Picture taken from here
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http://fanboyplanet.com/the-greatest-battle-of-them-all-coyote-vs-acme/
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In a Nutshell

Particle identification aims to solve a classification problem

The AI model (or classifier) simply represents a function fmodel

fmodel : Features (information from detector) 7→ Discriminant (1)

fmodel is determined by:
I Choice of model / algorithm
I Provided data
I Training (conditions)

Need to judge quality of fmodel

I How well does fmodel solve the underlying classification problem?
I Can fmodel be applied on data sets other than the training data?

⇒ Need performance metrics to address these questions properly
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Binary Classification

Example:

One event with 2 possible particle
types (e.g. 1 and 2)

Event is characterized by an n-dim
feature vector ~vfeat

Discriminant D:

D = fmodel(~vfeat) ∈ R
Threshold function:

fthreshold(D, t) =

{
1, if D ≥ t,

2 else

We find: fthreshold(D, 0.5) = 1
⇒ The event is labeled as particle
type 1

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 7 / 47



Binary Classification

Example:

One event with 2 possible particle
types (e.g. 1 and 2)

Event is characterized by an n-dim
feature vector ~vfeat

Discriminant D:

D = fmodel(~vfeat) ∈ R
Threshold function:

fthreshold(D, t) =

{
1, if D ≥ t,

2 else

We find: fthreshold(D, 0.5) = 1
⇒ The event is labeled as particle
type 1

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 7 / 47



Binary Classification

Example:

One event with 2 possible particle
types (e.g. 1 and 2)

Event is characterized by an n-dim
feature vector ~vfeat

Discriminant D:

D = fmodel(~vfeat) ∈ R

Threshold function:

fthreshold(D, t) =

{
1, if D ≥ t,

2 else

We find: fthreshold(D, 0.5) = 1
⇒ The event is labeled as particle
type 1

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 7 / 47



Binary Classification

Example:

One event with 2 possible particle
types (e.g. 1 and 2)

Event is characterized by an n-dim
feature vector ~vfeat

Discriminant D:

D = fmodel(~vfeat) ∈ R
Threshold function:

fthreshold(D, t) =

{
1, if D ≥ t,

2 else

We find: fthreshold(D, 0.5) = 1
⇒ The event is labeled as particle
type 1

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 7 / 47



Binary Classification

Example:

One event with 2 possible particle
types (e.g. 1 and 2)

Event is characterized by an n-dim
feature vector ~vfeat

Discriminant D:

D = fmodel(~vfeat) ∈ R
Threshold function:

fthreshold(D, t) =

{
1, if D ≥ t,

2 else

We find: fthreshold(D, 0.5) = 1
⇒ The event is labeled as particle
type 1

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 7 / 47



Multiclass Classification

Example:

One event with m possible particle
types (e.g. 1, 2, 3,..., m)

Event is characterized by an n-dim
feature vector ~vfeat

Discriminant ~D: D1
...

Dm

 = ~D = fmodel(~vfeat) ∈ Rm

Threshold function:

fthreshold( ~D) ≡ i for Di = max [ ~D]

We find: fthreshold( ~D) = 2
⇒ The event is labeled as particle
type 2
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Threshold Functions

Different threshold functions available ↔ Binary / Multiclass classification ?

Shown below are three examples of possible threshold functions:

i) fthreshold( ~D) ≡ i for Di = max [ ~D]

ii) fthreshold( ~D, t) ≡ i for Di = max [ ~D − t · 1]

iii) fthreshold( ~D, t) ≡ i for Di = max [ 1
t
· ~D]
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Example Analysis

Throughout this lecture (and the hands-on session) we will look at a toy data set:

#Events #Species #Features Labeled ?
∼ 257 k 3 6 yes

Want to understand / explain PID analysis steps, with the help of this toy data

Goal: Classify events in the data, using the provided features

Approach: Use scikit machine learning algorithm(s)

Issue: Evaluate performance of the algorithm(s) properly
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Example Analysis: The Data Set I

This is the first thing you should do: Look at your input features!

Variables show different correlations, depending on the species → Ideal for PID

Variables show different ranges
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Example Analysis: The Data Set II

This is the first thing you should do: Look at your input features!

Variables show different correlations, depending on the species → Ideal for PID

Variables show different ranges

Variable 5 ∼ Variable 2

Variable 6 is just a flat random distribution
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Example Analysis: The Data Set III

This data set is labeled:

Species Label
1 0
2 1
3 2

Labeled data allows to perform supervised training

But this data set is designed such that one might perform unsupervised learning as
well (e.g. clustering)
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Example Analysis: The Correlation Matrix

Different methods to calculate feature correlations, e.g. Spearman vs. Pearson

Off-diagonal elements...
... close to one indicate redundancy → no information gain
... close to zero indicate no correlation
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Example Analysis: Training a Multilayer Perceptron (MLP)

Use labels in data → supervised training of MLP

#Inputs #Hidden Layers #Neurons in Hidden Layer #Outputs
4 1 5 3

Used 25% of entire data for validation (explained later in detail)

Ignored variable 5 and 6

Pre-processing: Normalized remaining input features between 0 and 1

First things to check right after training: training curve(s) and output distributions
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Example Analysis: Using the MLP

Applied MLP on entire toy data:

#Events Labeled as
∼ 85 k 1
∼ 85 k 2
∼ 87 k 3

→ Is this good / bad?

Need metrics to judge performance properly

Our data is labeled → impact on metrics we can use
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Labeled Data

  

Data with
labeled
events

CLASSIFIER

Data with
labeled / 
identified
events

Events are tagged according to particle type (e.g. 1: e−, 2: π−, ...)

Consequently, one knows:
i) The abundance of each particle type in the entire data set (e.g. 10 k e−)
ii) The relative abundance between the different particles (e.g. N(e−) = 0.1N(π−))

Most common training procedure used here is supervised training
(one could perform unsupervised training of course)
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True and False Positive Rate I
The building Blocks of Performance Evaluation

True Positive Rate(i) =
#Events CORRECTLY identified as species i

#Events labeled as species i
(2)

False Positive Rate(i) =
#Events FALSELY identified as species i

#Events NOT labeled as species i
(3)
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True and False Positive Rate I
The building Blocks of Performance Evaluation

True Positive Rate(i) =

#Events∑
j=1

δ(Predicted Label j− i)× δ(True Label j− i)

#Events∑
j=1

δ(True Label j− i)

(2)

False Positive Rate(i) =

#Events∑
j=1

δ(Predicted Label j− i)× [1.0− δ(True Label j− i)]

#Events∑
j=1

[1.0− δ(True Label j− i)]

(3)
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True and False Positive Rate II
The building Blocks of Performance Evaluation

Analogously, one can define the True Negative and False Negative Rate

The True Positive Rate (TPR) and False Negative Rate (FNR) are...

... universal, i.e. they do not1 depend on relative abundances between the different
particle types

... characteristic for the used classifier

The most important evaluation metrics are directly derived from the TPR and FPR

1Given enough statistics for each species and each feature distribution!
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Receiving Operator Characteristics (ROC)

Suppose a binary classification problem with two particle species (1 and 2)

Trained AI Model to solve this problem

Basic Question: What is the model actually doing?

Approach: Perform a threshold scan
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The ROC-Curve
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AUC - Area Under ROC
Area under the ROC-Curve is another performance metric
AUC = 1.0 ↔ Optimal classifier
AUC = 0.0 ↔ Bad classifier
Found here: AUC = 0.94
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Comparing ROC-Curves for different Training Setups

Identify three particle species using differently trained MLP models

ROC-curves allow to compare the classification performance between
i) Particle species
ii) Different models

AUC for all curves shown here ∼ 0.99
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Comparing ROC-Curves for different Classifier

Identify three particle species using two different classification models

ROC-curves allow to compare the classification performance between
i) Particle species
ii) Different models

AUC(MLP) ∼ 0.99 / AUC(lin. svm) ∼ 0.93
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The Confusion Matrix

Right after the ROC, the second most important monitoring tool

Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix
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The Confusion Matrix
Right after the ROC, the second most important monitoring tool
Nearly all performance measures (accuracy, F1 score, purity, mcc, efficiency,...) are
directly derived from this matrix
The elements in the confusion matrix Ĉ are defined2 as:

cij(t) ≡
N−1∑
k=0

δ(Ltrue,k − `i )× δ(Lpred,k(t)− `j) (4)

δ(x) =

{
1, if x = 0,
0, else

(5)

With:

Ltrue,k true label of event k

Lpred,k(t) predicted label of event k, using the threshold t

`i the label corresponding to species i

NOTE: The definition of the above equation depends on which axis holds the true
/ predicted label

2Directly derived from TPR and FPR
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Confusion Matrix from the Example Analysis
Shown below is the confusion matrix for a neural network classifying three particle species
(see previous slides)
Ideally: All diagonal elements should be one and all off-diagonal elements should be zero
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Confusion Matrix from the Example Analysis

Shown below is the confusion matrix for a neural network classifying three particle species
(see previous slides)

Ideally: All diagonal elements should be one and all off-diagonal elements should be zero

⇒ Always check for consistency between different metrics!

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 26 / 47



The Accuracy

The accuracy can be calculated from the weighted trace of the confusion matrix

Accuracy ≡ 1
#Events

Tr(Ĉ) (6)

=
1

#Events

#Species∑
i

cii (7)

=
1

#Events

#Species∑
i

TPR(i) ·#Events with species i (8)

=

#Species∑
i

TPR(i) · R(i) (9)

Where R(i) denotes the abundance ratio of species i (e.g. 20% protons)

The accuracy varies between 0: bad performance and 1: ideal performance

Balanced Accuracy = 1
#Species ·

#Species∑
i

TPR(i)
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Accuracy from the Example Analysis

257 k events with three species: R(1) = R(2) = R(3) = 1
3

Using the formulas from the previous slides yield:

Accuracy (MLP) = (77, 464+ 78, 362+ 83, 412)/257 k ≈ 93%

Accuracy (LSVM) = 0.333·0.94 + 0.333·0.90 + 0.333·0.90 ≈ 0.91%

⇒ Obtain same values when using the accuracy function from scikit
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The Precision and F1-Score

The precision3 can be thought of as ’cleanliness’ of the classified data set

Precision for species i ≡ #Events CORRECTLY identified as species i
#Events identified as species i

(10)

The F1-Score is deduced from F-measure and folds the TPR together with the
purity

F1-Score for species i ≡ 2 · TPR(i) · Precision(i)
TPR(i)+ Precision(i)

(11)

Like the accuracy, these metrics also depend on the relative abundance R(i)

Both, precision and F1 show values between 0: bad performance and 1: ideal
performance

3Sometimes also referred to as purity
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The Matthews Correlation Coefficient (MCC)
Like the accuracy, the MCC can be computed from entries within the
(unnormalized) confusion matrix:4

MCC =

∑
k

∑
l

∑
m

(CkkClm − CklCmk)√∑
k

(
∑
l

Ckl)(
∑
k′ 6=k

∑
l′
Ck′ l′) ·

√∑
k

(
∑
l

Clk)(
∑
k′ 6=k

∑
l′
Ck′ l′)

(12)

In a very simplified picture, the MCC combines the true positive rate, false positive
rate and purity5

MCC (Binary Classification) =
TPR(i) · TPR(j)− FPR(i) · FPR(j)√

TPR(i)
Precision(i) ·

TPR(j)
Precision(j)

(13)

The MCC is a common / preferable choice for imbalanced data

Unlike the previously introduced metrics, the MMC might vary6 between -1: bad
performance and 1: ideal performance

4Formula taken from wikipedia
5This is exact true for binary classification
6Different for binary or multiclass classification.
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Comparing Metrics for the Example Analysis

Compare performance metrics of differently trained neural networks and the linear
support vector machine on the given data set

Model Precision (averaged) F1-Score (averaged) Accuracy MCC

MLP(1) 0.93 0.93 0.93 0.89

MLP(2) 0.92 0.92 0.92 0.88

MLP(3) 0.93 0.93 0.93 0.89

LSVM 0.91 0.91 0.91 0.87

MLP(1): Use all features for training

MLP(2): Use only features 1-4 for training

MLP(3): Use only normalized features 1-4 for training

Different versions of MLP show similar performance and are somewhat better than
the LSVM model
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Balanced vs. Imbalanced Data

Balanced data: R(i) = 1
#Species , ∀i

Imbalanced data: ∃i : R(i) 6= 1
#Species

TPR and FPR (and therefore the ROC-Curve) ideally7 do not depend on balance
in data

BUT: Accuracy, Purity, MCC, F1-Score do8 ⇒ Take into consideration when
evaluating your model(s) on different data sets

7Given sufficient statistics of course for each label and distribution
8By definition, because R is folded in.
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Imbalanced Toy Data

Generated toy data with imbalance between species

Applied MLP (trained on balanced data!) on different toy sets
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Which Metric to use?

As usual: It depends on...

... what you intend to find out about your classifier
I Are you interested in global performance? (e.g. accuracy)
I Do you need to know the performance for a certain species only? (e.g. precision)

... imbalance in your data

... available statistics → e.g. ROC-Curve simply not available

But in general: It helps to compare different metrics

Do not trust single numbers only → also look at covariance matrix (your best
friend!) and the ROC-curve (if possible)
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Should I train on imbalanced Data?

Again, it depends on...

... what you want to do → Do you want to analyze “real” data with a known
imbalance → train your classifier appropriately

... the training data you have → might be highly imbalanced and you have no other
data

... the resources you have (time, computing power, etc.)

Best option (if resources available):

⇒ Train on different data sets and compare performances ↔ Systematic X-check

Sufficient (most of the time):

⇒ Train on balanced data → Let model pick up all feature distributions equally and
check if model generalizes well enough on imbalanced sets
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Summary: Metrics for labeled Data

TPR and FPR are the building blocks for evaluating a classification algorithm

Introduced a few (but not all) metrics
I ROC-Curve
I AUC
I Accuracy
I Precision
I F1-Score
I MCC

There are many more

Think about which information you need for a proper evaluation → Choose metric
accordingly
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Unlabeled Data

  

Data with
labeled
events

CLASSIFIER

Data with
labeled / 
identified
events

  Data CLASSIFIER
Data with
discrimant/
score
values

Events are not labeled, i.e. the particle type is a priori not known

⇒ The metrics introduced earlier are not directly applicable

However: One might have some measures to roughly define a particle species
(e.g. energy deposits in a detector)

If the training data is unlabeled as well:
I Perform unsupervised training (e.g. clustering algorithms)
I Label data by yourself, e.g. autoencoder neural networks
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Example Analysis with unlabeled Toy Data

Suppose that our (balanced) toy data
has no labels

I No information which event
corresponds to which species

I Do not know the abundance of
each individual species

The correlation between variable 3
and 4 suggests that we might perform
a cluster analysis → unsupervised
learning

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 38 / 47



Example Analysis: kMeans-Clustering

Trained kMeans-algorithm with three
cluster centers and 300 iterations

Used variables 3 and 4 only

Compute distance to each cluster
→ Our discriminant
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Example Analysis: kMeans-Clustering

Trained kMeans-algorithm with three
cluster centers and 300 iterations

Used variables 3 and 4 only

Compute distance to each cluster
→ Our discriminant

ALWAYS check the input features after classification
Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 39 / 47



Using Yields

Could use correlations between variable 2 and 1 for further analysis ↔ They have
not been used for training

Red lines in top right panel indicate hypothetical selection criteria to extract yields
for each cluster / blob

Define metrics based on these yields
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Using Yields: Example from GlueX PID
Goal: Identify leptons in GlueX γp → e+e−p data (measured → no labels)
Approaches: AI model and cut based analysis
Compare approaches by looking at dilepton mass9 and determine signal (S) and
background (B) contributions
Calculate FOM (Figure Of Merit): S/

√
S + B

9NOT part of the model input features
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Generalization and Stability I

Question: How well does the trained model generalize → Response on “unknown”
data

The model has been trained under certain conditions which might not be reflected
by the data we want to analyze

Approach: Use validation data
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Picture taken from Brenda Ngs introductory talk at the: deep learning for science school 2019

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 42 / 47

https://sites.google.com/lbl.gov/dl4sci2019/agenda


Generalization and Stability I

Question: How well does the trained model generalize → Response on “unknown”
data

The model has been trained under certain conditions which might not be reflected
by the data we want to analyze

Approach: Use validation data

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 42 / 47

https://sites.google.com/lbl.gov/dl4sci2019/agenda


Generalization and Stability I

Question: How well does the trained model generalize → Response on “unknown”
data

The model has been trained under certain conditions which might not be reflected
by the data we want to analyze

Approach: Use validation data

Picture taken from Mustafa Mustafas talk at the: deep learning for science school 2019

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 42 / 47

https://sites.google.com/lbl.gov/dl4sci2019/agenda


Generalization and Stability II

Question: How well does the trained model generalize → Response on “unknown” data

The model has been trained under certain conditions which might not be reflected by the
data we want to analyze

Approach: Apply smearing: features 7→ features× Gauss(1, δ) to training / validation
data and monitor performance

Shown below: MLP accuracy on toy data for different δ
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Summary and Outlook (Part I)

Introduced metrics to evaluate the performance of (any) classification algorithm

Different metrics provide different information

Choice of metrics depends on which question one tries to answer and the data set
I Global vs. individual performance (for one species)
I Labeled vs. unlabeled data
I Balanced vs. imbalanced data

Looked a distributed data only (no images), but the approaches shown here are
applicable to any data set / classification problem

Always:
I Use and compare different metrics
I Look at the classifier output distributions
I Check features before / after classification
I Have a critical view on your results ↔ NEVER trust your classifier blindly

Second part of this lecture: hands-on session
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Part II: Hands-On

Daniel Lersch (FSU) GlueX-EIC-PANDA ML Workshop September 21, 2020 45 / 47



The (Toy) Data Set

The data (.csv files) are stored at the FSU cluster:

http://hadron.physics.fsu.edu/~dlersch/GlueX_PANDA_EIC_ML_Workshop/

The naming scheme for the files is:

hands_on_data_P1_P2_P3.csv

where Pi refers to the relative abundance of species i

Example: hands_on_data_02_07_01.csv

→ 20% of all particles in this data refer to species 1, 70% refer to species 2 and
10% refer to species 3
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Scripts and Tools
There are three options to join this hands-on

Option 1 (classic)
1. Go to:

http://hadron.physics.fsu.edu/~dlersch/GlueX_PANDA_EIC_ML_Workshop/
2. Download python scripts from the folder: Repl_Files
3. Run everything on your local machine / cluster / ...

Option 2 (fancy)
1. Go to:

http://hadron.physics.fsu.edu/~dlersch/GlueX_PANDA_EIC_ML_Workshop/
2. Download jupyter notebooks from the folder: Notebooks
3. Run everything on your local machine / Google collab / Binder / ....

Option 3 (easy) [Many thanks to Cristiano Fanelli for bringing this option up!]
1. Go to: http://repl.it/@daniel49/HandsOnSession
2. Click the Fork button
3. Follow instructions in main.py

Options 1 and 2 require python ≥ 3.6 plus the corresponding libraries

Option 3 requires internet only

Material will be available for ∼ 1 week
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