
On Gradient Descent and Local vs. Global Optimum

We conjecture that
both simulating anneal-
ing and SGD converge
to the band of low crit-
icial points, and that
all criticial points found
are local minima of high
quality measured by the
test error. ... it is
in practice irrelevant as
global minimum often
leads to overfitting.

Note: Critical points are maxima, minima, and saddle points.

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

http://proceedings.mlr.press/v38/choromanska15.pdf

Activation functions

Discrimination functions of the form y(x) = wTx+ w0 are simple linear
functions of the input variables x, where distances are measured by means
of the dot product.

Let us consider the non-linear logistic sigmoid activation function g(·) for
limiting the output to (0, 1), that is,

y(x) = g(wT x+ w0),

where

g(a) =
1

1 + exp(−a) 0-2-4

1

0.8

0.6

4

0.4

0.2

2

0

a

Single-layer network with a logistic sigmoid activation function can also
output probabilities (rather than geometric distances).

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Activation functions (cont.)

Heaviside step function:

g(a) =

{
0 if a < 0
1 if a ≥ 0

0-2 2 4-4

1

0.8

0.6

0.4

0.2

0

a

Hyperbolic tangent function:

g(a) = tanh(a) =
exp(a)− exp(−a)
exp(a) + exp(−a)

Note, tanh(a) ∈ (−1, 1)

1

0 2

0.5

0

-0.5

-1

-4 -2 4

a

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Activation functions (cont.)

Rectified Linear Unit (ReLU) function:

g(a) = max(0, a)

Leaky ReLU

g(a) = max(0.1 · a, a)

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Online/Mini-Batch/Batch Learning

Online learning:

Update weight w(i+1) = w(i) − η ∂E (i)

∂w (pattern by pattern).

This type of online learning is also called stochastic gradient descent, it is
an approximation of the true gradient.

Mini-Batch Learning: Partition X randomly in subsets B1,B2, . . . ,BS and

Update weight w(i+1) = w(i) − η 1
|Bs |
∑S

s
∂E (s)

∂w by computing
derivatives for each pattern in subset Bs separately and then sum over
all patterns in Bs .

Batch learning:

Update weight w(i+1) = w(i) − η 1
N

∑N
n=1

∂E (n)

∂w by computing
derivatives for each pattern separately and then sum over all patterns.

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Learning in Neural Networks with Backpropagation

x1 x2 xD

a
(1)
1 a

(1)
2 a

(1)
N1

a
(2)
1 a

(2)
2 a

(2)
N2

y1 y2

W(1),b(1)

W(2),b(2)

W(3),b(3)

parameters to fit

minimize 1
2‖f (W(3)f (W(2)f (W(1)X+

b(1)) + b(2)) + b(3))− Y‖2

Core idea:

Calculate error of loss function and change weights
and biases based on output.

These “error” measurements for each unit can be
used to calculate the partial derivatives.

Use partial derivatives with gradient descent for
updating weights and biases and minimizing loss
function.

Problem: At which magnitude one shall change e.g.

weight W
(1)
ij based on error of y2?

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Learning in Neural Networks with Backpropagation (cont.)

Input: x1, x2, output: a
(3)
1 , a

(3)
2 , target: y1, y2 and g(·) is activation

function. NN calculates2 g(W(2)g(W(1)x)).

a
(1)
1
x1

a
(1)
2
x2

a
(2)
1

z
(2)
1

a
(2)
2

z
(2)
2

a
(2)
3

z
(2)
3

a
(3)
1

z
(3)
1

a
(3)
2

z
(3)
2

L1

L2

L3

W(1)

W(2)

z
(2)
1 = W

(1)
10 x0 + W

(1)
11 x1 + W

(1)
12 x2 a

(2)
1 = g(z

(2)
1)

z
(2)
2 = W

(1)
20 x0 + W

(1)
21 x1 + W

(1)
22 x2 a

(2)
2 = g(z

(2)
2)

z
(2)
3 = W

(1)
30 x0 + W

(1)
31 x1 + W

(1)
32 x2 a

(2)
3 = g(z

(2)
3)

z
(2)

︸︷︷︸

3×1

= W
(1)

︸ ︷︷ ︸

3×3

x
︸︷︷︸

3×1

a(2) = g(z(2))

z
(3)
1 = W

(2)
10 a

(2)
0 + W

(2)
11 a

(2)
1 + W

(2)
12 a

(2)
2 + W

(2)
13 a

(2)
3 a

(3)
1 = g(z

(2)
1)

z
(3)
2 = W

(2)
20 a

(2)
0 + W

(2)
21 a

(2)
1 + W

(2)
22 a

(2)
2 + W

(2)
23 a

(2)
3 a

(3)
2 = g(z

(2)
2)

z
(3)

︸︷︷︸

2×1

= W
(2)

︸ ︷︷ ︸

2×4

a
(2)

︸︷︷︸

4×1

a(3) = g(z(3))

F
or
w
ar
d
p
as
s

E (W) = 1
2

[
(a

(3)
1 − y1)

2 + (a
(3)
2 − y2)

2
]
= 1

2‖a(3) − y‖2

2Notation adapted from Andew Ng’s slides.
T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Learning in Neural Networks with Backpropagation (cont.)
For each node we calculate δ

(l)
j , that is, error of unit j in layer l , because

∂

∂W
(l)
ij

E (W) = a
(l)
j δ

(l+1)
i . Note ⊙ is element wise multiplication.

a
(1)
1
x1

a
(1)
2
x2

a
(2)
1

z
(2)
1

a
(2)
2

z
(2)
2

a
(2)
3

z
(2)
3

a
(3)
1

z
(3)
1

a
(3)
2

z
(3)
2

L1

L2

L3

W(1)

W(2)

δ(3) = (a(3) − y)⊙ g ′(z(3))

δ(2) = (W(2))T δ(3) ⊙ g ′(z(2))

Note δ(1) is the input, so no term.
B
ac
kw

ar
d
p
as
s

E (W) = 1
2

[
(a

(3)
1 − y1)

2 + (a
(3)
2 − y2)

2
]
= 1

2‖a(3) − y‖2

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Learning in Neural Networks with Backpropagation (cont.)

Backpropagation = forward pass & backward pass

Given labeled training data (x1, y1), . . . , (xN , yN).

Set ∆
(l)
ij = 0 for all l , i , j . Value ∆ will be used as accumulators for

computing partial derivatives.
For n = 1 to N

Forward pass, compute z(2), a(2), z(3), a(3), . . . , z(L), a(L)

Backward pass, compute δ(L), δ(L−1), . . . , δ(2)

Accumulate partial derivate terms, ∆(l) := ∆(l) + δ(l+1)(a(l))T

Finally calculated partial derivatives for each parameter:
∂

∂W
(l)
ij

E (W) = 1
N
∆

(l)
ij and use these in gradient descent.

See interactive demo.

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Bayes Decision Region vs. Neural Network

0 2 4 6 8 10

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

x

y

Points from blue and red class are generated by a mixture of Gaussians.
Black curve shows optimal separation in a Bayes sense. Gray curve shows
neural network separation of two independent backpropagation learning
runs.

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Neural Network (Density) Decision Region

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Overfitting/Underfitting & Generalization

Consider the problem of polynomial curve fitting where we shall fit the
data using a polynomial function of the form:

y(x ,w) = w0 + w1x + w2x
2 + . . .+ wMxM =

M∑

j=0

wjx
j .

We measure the misfit of our predictive function y(x ,w) by means of error
function which we like to minimize:

E (w) =
1

2

N∑

i=1

(y(xi ,w)− ti)
2

where ti is the corresponding target value in the given training data set.

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Polynomial Curve Fitting

x

t

M = 0

0 1

−1

0

1

x

t

M = 1

0 1

−1

0

1

x

t

M = 3

0 1

−1

0

1

x

t

M = 9

0 1

−1

0

1

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Polynomial Curve Fitting (cont.)

M = 0 M = 1 M = 3 M = 9
w⋆
0 0.19 0.82 0.31 0.35

w⋆
1 −1.27 7.99 232.37

w⋆
2 −25.43 −5321.83

w⋆
3 17.37 48568.31

w⋆
4 −231639.30

w⋆
5 640042.26

w⋆
6 −1061800.52

w⋆
7 1042400.18

w⋆
8 −557682.99

w⋆
9 125201.43

Table: Coefficients w⋆ obtained from polynomials of various order. Observe the dramatically
increase as the order of the polynomial increases (this table is taken from Bishop’s book).

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Polynomial Curve Fitting (cont.)
Observe:

if M is too small then the model underfits the data
if M is too large then the model overfits the data

If M is too large then the model is more flexible and is becoming
increasingly tuned to random noise on the target values. It is interesting to
note that the overfitting problem become less severe as the size of the
data set increases.

x

t

N = 15

0 1

−1

0

1

x

t

N = 100

0 1

−1

0

1

ImageNet Classification with Deep ConvolutionalNeural Networks: “The

easiest and most common method to reduce overfitting on image data is to artificially

enlargethe dataset using label-preserving transformation.”
T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

Polynomial Curve Fitting (cont.)

One technique that can be used to control the overfitting phenomenon is
the regularization.

Regularization involves adding a penalty term to the error function in
order to discourage the coefficients from reaching large values.

The modified error function has the form:

Ê (w) =
1

2

N∑

i=1

(y(xi ,w)− ti)
2 +

λ

2
wTw.

By means of the penalty term one reduces the value of the coefficients
(shrinkage method).

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Regularized Polynomial Curve Fitting M = 9

x

t

ln λ = −18

0 1

−1

0

1

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Regularization in Neural Networks

Number of input/output units is generally determined by the
dimensionality of the data set.

Number of hidden units M is free parameter that can be adjusted to
obtain best predictive performance.

Generalization error is not a simple function of M due to the presence
of local minima in the error function.

One straightforward way to deal with this problem is to increase
stepwise the value of M and to choose the specific solution having
the smallest test error.

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Regularization in Neural Networks (cont.)

Equivalent to the regularized curve fitting approach, we can choose a
relatively large value for M and control the complexity by the addition of a
regularized term to the error function.

Ê (w) = E (w) +
λ

2
wTw

This form of regularization in neural networks is known as weight decay.

Weight decay encourages weight values to decay towards zero, unless
supported by the data.

It can be considered as an example of a parameter shrinkage method
because parameter values are shrunk towards zero.

It can be also interpreted as the removal of non-useful connections
during training.

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

A too Overfitted Neural Network Model

−1 0 1 2 3 4 5

−
1

0
1

2
3

4
5

x

y

Hidden units: 20, weight decay: 0 Hidden units: 20, weight decay: 0

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

A too Underfitted Neural Network Model

0 2 4 6

−
1

0
1

2
3

4
5

x

y

Hidden units: 20, weight decay: 2 Hidden units: 20, weight decay: 2

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Model Complexity is Properly Penalized

0 2 4 6

−
1

0
1

2
3

4
5

x

y

Hidden units: 20, weight decay: 0.3 Hidden units: 20, weight decay: 0.3

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Regularization by Early Stopping

Another alternative of regularization as a way of controlling the
effective complexity of a network is the procedure of early stopping.

error

train

test

epochs

stop

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Example Early Stopping after 10 Epochs

−2 0 2 4

−
1

0
1

2
3

4
5

x

y

Hidden units: 20, weight decay: 0, early stop after: 10 Hidden units: 20, weight decay: 0, early stop after: 10

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Example Early Stopping after 50 Epochs

−1 0 1 2 3 4 5 6

0
1

2
3

4
5

x

y

Hidden units: 20, weight decay: 0, early stop after: 50 Hidden units: 20, weight decay: 0, early stop after: 50

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

Example Early Stopping after 100 Epochs

−1 0 1 2 3 4 5

−
1

0
1

2
3

4
5

x

y

Hidden units: 20, weight decay: 0, early stop after: 100 Hidden units: 20, weight decay: 0, early stop after: 100

T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020

