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A Very Brief Introduction to Deep Learning

A set of data inputs and labels
(xi, yi)

A mapping
f(xi) = yi
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A Very Brief Introduction to Deep Learning

yj – true labels
ŷj – predicted labels
ŷj = ϕ(wijxi + bj)

Define a loss function (e.g. cross-entropy loss):

L(W) = −
∑

j
[yj log(ŷj)− (1− yj) log(1− ŷj)]

Minimize loss function with respect to the weights W :

∂L
∂W = 0

High-dimensional optimization problem, gradient descent, etc.
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ŷj – predicted labels
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ŷj – predicted labels
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A Very Brief Introduction to Deep Learning

Artificial Neural Network
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In Praise of Interdisciplinarity

I am here because of a collaboration between physicists from KVI@UG …
…and data scientists from CIT@UG
I am neither, and a bit of both
CIT organizes annual calls for project proposals from researchers across the University
Selected proposals receive up to 450 hours of Data Science support from the CIT
Winning projects encompass Philosophy of Science, Economics, Ancient History,
Astronomy, Particle Physics and others
Several of these projects have led to joint publications
It’s a lot of fun!
If your institution doesn’t do this, I encourage you to encourage them to start
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What This Is

What you can expect from this presentation:

Not the latest and greatest research results
An overview of a Deep Learning approach to Particle Physics, using as an example the
joint CIT + KVI project
Some insights, hopefully
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Event Data

The data that we have comes from a simulation of the following reaction:

e+ + e− → Ψ’(3686) → π+ + π− + J/Ψ(3097) →
{
π+ + π− + e+ + e−
π+ + π− + µ+ + µ−

or the simpler one:
e+ + e− → π+ + π− + µ+ + µ−
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Event Data

The output file produced by the simulations looks like this:
data = open('data/pipijpsi_ee.dat')
for line in data.readlines()[:100]:

print(line)
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Event Data
Event number: 0
Number of digis: 277
T0: 656

MC truth information:
Pi+: px=0.242978 py=-0.029811 pz=-0.234886 xi=0.021781 yi=-0.154217 zi=0.625080

xf=87.543005 yf=50.414698 zf=-104.047484
Pi-: px=-0.069618 py=-0.011896 pz=0.152243 xi=0.021781 yi=-0.154217 zi=0.625080

xf=-24.346692 yf=41.429941 zf=135.987877
e+: px=1.153744 py=0.669807 pz=-0.660627 xi=0.021781 yi=-0.154217 zi=0.625080

xf=77.586081 yf=56.726887 zf=-48.333559
e-: px=-1.286557 py=-0.628100 pz=0.741661 xi=0.021781 yi=-0.154217 zi=0.625080

xf=-95.105332 yf=-35.066791 zf=53.326682

Detector information:
layer=0, wire=21, stereo=1, XE=-76.671368, YE=-18.407167, XW=-74.990806, YW=24.365990, RT=500.156250, RC=2097, TRK=1
layer=2, wire=24, stereo=1, XE=-102.679683, YE=-6.729982, XW=-95.067204, YW=39.378125, RT=516.468750, RC=534, TRK=1
layer=3, wire=29, stereo=1, XE=-114.525332, YE=-12.903906, XW=-110.745721, YW=31.905293, RT=1139.062500, RC=506, TRK=1
layer=3, wire=28, stereo=1, XE=-115.250000, YE=0.000000, XW=-106.477116, YW=44.104266, RT=560.343750, RC=639, TRK=1
layer=4, wire=30, stereo=1, XE=-125.823252, YE=18.664116, XW=-121.722811, YW=-36.924211, RT=485.625000, RC=835, TRK=1
layer=5, wire=35, stereo=1, XE=-138.222014, YE=12.092859, XW=-132.328227, YW=-41.722930, RT=1276.593750, RC=671, TRK=1
layer=5, wire=34, stereo=1, XE=-136.642076, YE=24.093685, XW=-135.461071, YW=-30.030996, RT=582.937500, RC=830, TRK=1
layer=6, wire=38, stereo=1, XE=-149.059575, YE=17.642363, XW=-145.952725, YW=-35.040149, RT=556.031250, RC=752, TRK=1
layer=7, wire=38, stereo=1, XE=-159.610436, YE=25.279810, XW=-158.494901, YW=-31.526596, RT=453.562500, RC=551, TRK=1
layer=8, wire=35, stereo=0, XE=-193.598870, YE=36.448287, XW=-193.598870, YW=36.448287, RT=538.781250, RC=915, TRK=1
layer=9, wire=35, stereo=0, XE=-207.515266, YE=48.025142, XW=-207.515266, YW=48.025142, RT=505.500000, RC=634, TRK=1
layer=10, wire=39, stereo=0, XE=-219.249655, YE=67.991112, XW=-219.249655, YW=67.991112, RT=593.718750, RC=497, TRK=1
layer=11, wire=40, stereo=0, XE=-236.978178, YE=64.312875, XW=-236.978178, YW=64.312875, RT=1335.656250, RC=561, TRK=1
layer=11, wire=39, stereo=0, XE=-231.786356, YE=81.054842, XW=-231.786356, YW=81.054842, RT=614.343750, RC=487, TRK=1
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Event Data

The relevant input consists of:

XE(XW) = the x-position of a hit
YE(YW) = the y-position of a hit
RC = the energy of a hit
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Event Data

Possible “labels”:

event type = which type of event does the data describe
TRK = the “track” to which the hit belongs: π±, e±(µ±)
px, py, pz = the momenta of each “track”
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Event Data

Possible problems to be solved:

event type = Event classification
TRK = Track identification / classification
px, py, pz = Momenta regression
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A Bit of Context

ATLAS and CMS collaborations rely more on Deep Learning (DL), especially for the
HL-LHC
Convolutional Neural Networks have proven the best for event selection
Use of low-level data in DL pipelines is optimal
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Back to DL: Convolutional Neural Networks (CNNs)
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Input Preprocessing: Step 1

Step 1 Separate the data into files, one per event; a typical file looks like:
ID, Layer, Wire, Stereo, X, Y, RT, RC, TRK
0, 0, 10, 1, 14.805, 74.431, 277.312, 705.0, 1
1, 1, 12, 1, 9.394, 87.379, 482.156, 697.0, 1
2, 2, 12, 1, 16.324, 98.873, 485.906, 480.0, 1
3, 4, 12, 1, 15.192, 123.175, 444.937, 670.0, 1
4, 5, 14, 1, 20.701, 134.500, 539.531, 418.0, 1
5, 6, 16, 1, 14.483, 147.050, 555.0, 601.0, 1
6, 7, 16, 1, 21.796, 157.583, 440.437, 724.0, 1
7, 8, 16, 0, 36.448, 193.598, 513.375, 1052.0, 1
8, 9, 17, 0, 30.724, 210.772, 660.375, 515.0, 1
9, 10, 19, 0, 36.096, 226.694, 625.312, 609.0, 1

10, 11, 19, 0, 47.243, 240.962, 430.031, 435.0, 1

where
X =

XE + XW
2

,Y =
YE + YW

2
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3, 4, 12, 1, 15.192, 123.175, 444.937, 670.0, 1
4, 5, 14, 1, 20.701, 134.500, 539.531, 418.0, 1
5, 6, 16, 1, 14.483, 147.050, 555.0, 601.0, 1
6, 7, 16, 1, 21.796, 157.583, 440.437, 724.0, 1
7, 8, 16, 0, 36.448, 193.598, 513.375, 1052.0, 1
8, 9, 17, 0, 30.724, 210.772, 660.375, 515.0, 1
9, 10, 19, 0, 36.096, 226.694, 625.312, 609.0, 1

10, 11, 19, 0, 47.243, 240.962, 430.031, 435.0, 1

where
X =

XE + XW
2

,Y =
YE + YW

2
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Input Preprocessing: Step 2

Step 2 Generate images from each separate csv file
We’ll be looking at four types of images extracted from the data:

binary
total
average
per_hit
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Input Images: binary

Build an image with only information from X and Y (no RC, or energy)
Effectively, this means we retain, at most, information about the momenta of each track
The images will be binary, 0 for no hit, 1 for hit

Can we do something with this?
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binary Images: Momentum Distribution

For the J/ψ → e+e− and J/ψ → µ+µ−, the momenta distributions are virtually
indistinguishable
We predict that the classification between those events will be no better than random
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binary Images: Results
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binary Images: Results

With only information about the momenta:

One cannot distinguish between J/ψ → e+e− and J/ψ → µ+µ−, the AUC being 0.5
On the other hand, it is quite easy to distinguish between J/ψ → e+e− (µ+µ−) and
µ+µ−, with an AUC of 0.98
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Input Images: total

We now incorporate some information about the particle energy:

For each event we only consider the total energy of that event
Each hit is assigned to have that value of the energy…
…and then the entire data set is normalized
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total Images: Energy Distribution

The J/ψ → e+e− and J/ψ → µ+µ− total energy distributions are more separated,
though not completely
We do expect better than random chance of distinguishing between these events
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total Images: Results
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total Images: Results

Including the information about energy, even at a gross level, allows one to:

Distinguish now between J/ψ → e+e− and J/ψ → µ+µ−, with an AUC of ≈ 0.8

The AUC for the J/ψ → e+e− vs. µ+µ− classification marginally increases from 0.98 to
0.99

The reason might be that the total energy distributions for these events has a smaller
overlap
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Input Images: average

The total energy per event does not take into account the number of hits:

For each event we consider the energy averaged over the number of hits
Each hit is assigned to have that value of the energy…
…and then the entire data set is normalized

This should not be that different from the total energy case
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average Images: Energy Distribution

This looks very similar to the energy distribution for total images…not surprisingly …
…with maybe less overlap for the J/ψ → e+e− and J/ψ → µ+µ− events
We’d expect similar classification performance, maybe slightly better for the two J/ψ
events
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average Images: Results
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average Images: Results

Incorporating more energy information (average, rather than total), leads to:

No drastic changes in the classification performance …
…but a noticeable increase, from 0.79 to 0.85, for the J/ψ events
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Input Images: per_hit

Finally, let’s make use of even more finely grained information: :

Each hit will be assigned it’s own value of the energy…
…which means that the images will no longer be have uniform intensity …
…and then the entire data set is normalized

Can we do any better than before?
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Input Images: per_hit
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per_hit Images: Energy Distribution

This doesn’t look promising at all!
The per_hit energy distribution is essentially the same for all three types of events
We’d expect similar performance as in the binary case…
…wouldn’t we?
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per_hit Images: Results
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per_hit Images: Results

Including all the energy information possible has some interesting effects:

From the energy-per-hit distributions, one would expect doing no better than the binary
case
The performance, however, is the best we’ve gotten so far
Why?
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per_hit Images: Results

The energy-per-hit distribution doesn’t capture all the energy information from the images
In particular, it doesn’t include any spatial relationships between hits
CNN’s are very good at extracting spatial information from images
We used a CNN for classification, so this might be the reason we’ve been successful…
…but it’s difficult to be sure
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Multiclass classification

So far, we’ve consider binary classification, involving discriminating between two types of
events
Realistically, we’d want a network that can take as input images from either of the three
(or more) events, and classify them
Enter multiclass classification
We’ll be using the same four encodings of the energy as before: binary, total,
average, per_hit
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binary Images: Results
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total Images: Results
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average Images: Results
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average Images: Results
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per_hit Image Results
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Multiclass classification: Summary

Multiclass classification doesn’t seem to work as well as binary classification
However, in these plots, we’ve used the same “vanilla” CNN used for binary classification
(with an appropriate output layer)
We can do hyperparameter optimization to improve the classification performance
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Concluding

Event classification with CNN is eminently doable
For this simple case, a very simple CNN can achieve high AUC in binary classification
And reasonable accuracy for multiclass classification
The way detector data is encoded into images makes a huge difference on the
performance of the network (binary, total, average, per_hit)
This goes some way to make the model explainable
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Where does this fit in a broader context?

This is all very well, but not the whole story, obviously

We cheated a bit, by ignoring the noise in the data 😋
On the other hand, one can use semantic segmentation to train another network that will
remove the noise, so it’s all good!
What about after classifying the events, what then?
We might want to train another network, which will classify individual tracks
Before you ask, yes, you first have to identify the tracks, but we’ve seen this week that it
can be done
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Track Classification: Some more Distributions
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Track Classification: Some Results and Musings
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Track Classification: Some Results and Musings

No wonder the confusion matrix looks so pleasingly diagonal, the network can tell the
difference between particles and antiparticles!
Momentum information seems to be enough for track classification (binary)
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Further Steps

It is also possible to use CNNs for regression:
That is to extract the momenta for each track
This is a bit more involved:

Mean-squared error loss
Custom loss encoding momentum conservation
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Putting It All Together

A pipeline which one could envision would look something like:

Build Remove
noise

Classify
events

Detect
tracks

Classify
tracks

Extract
momenta
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Questions?

Thanks for your attention!
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