
Non-separable Case
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This data set is not properly separable with lines (also when using many
slack variables)
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Separate in Higher-Dim. Space
Map data in higher-dimensional space and separate it there with a
hyperplane
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Φ : R2 → R
3

(x1, x2) 7→ (z1, z2, z3) := (x21 ,
√
2x1x2, x

2
2 )
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Feature Space

Apply the mapping Φ : RN → F
x 7→ Φ(x)

to the data x1, x2, . . . , xm ∈ X and construct separating hyperplane in F
instead of X . The samples are preprocessed as
(Φ(x1), y1), . . . , (Φ(xm), ym) ∈ F × {±1}.

Obtained decision function:

f (x) = sgn

(
m∑

i=1

yiαi 〈Φ(x),Φ(xi )〉+ b

)

= sgn

(
m∑

i=1

yiαi k(x, xi ) + b

)

How about patters x ∈ R
N and product features of order d? Dim(F)

grows like Nd . Example N = 16 × 16, and d = 5 −→ dimension 1010.
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Kernels

A kernel is a function k , such that for all x, y ∈ X

k(x, y) = 〈Φ(x),Φ(y)〉,

where Φ is a mapping from X to an dot product feature space F .

The m ×m matrix K with elements Kij = k(xi , xj ) is called kernel matrix
or Gram matrix. The kernel matrix is symmetric and positive semi-definite,
i.e. for all ai ∈ R, i = 1, . . . ,m, we have

m∑

i ,j=1

aiajKij ≥ 0

Positive semi-definite kernels are exactly those giving rise to a positive
semi-definite kernel matrix K for all m and all sets {x1, x2, . . . , xm} ⊆ X .
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The Kernel Trick Example

Example : compute 2nd order products of two “pixels”, i.e.

x = (x1, x2) and Φ(x) = (x21 ,
√
2x1x2, x

2
2 )

〈Φ(x),Φ(z)〉 = (x21 ,
√
2x1x2, x

2
2 )(z

2
1 ,
√
2z1z2, z

2
2 )

T

= ((x1, x2)(z1, z2)
T )2

= (x · zT )2

= : k(x, z)
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Kernel without knowing Φ

Recall: mapping Φ : RN → F . SVM depends on the data through dot
products in F , i.e. functions of the form

〈Φ(xi ),Φ(xj )〉

With k such that k(xi , xj ) = 〈Φ(xi ),Φ(xj )〉, it is not necessary to
even know what Φ(x) is.

Example: k(u, v) = exp
(
−‖u−v‖2

γ

)
, in this example F is infinite

dimensional.
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Feature Space (Optimization Problem)

Quadratic optimization problem (soft margin) with kernel:

maximize W (α) =

m∑

i=1

αi −
1

2

m∑

i ,j=1

αiαjyiyjk(xi , xj )

subject to 0 ≤ αi ≤ C , i = 1, . . . ,m and

m∑

i=1

αiyi = 0
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(Standard) Kernels

Linear k0(u, v) = 〈u, v〉
Polynomial k1(u, v) = (〈u, v〉 +Θ)d

Gaussian k2(u, v) = exp

(
−‖u− v‖2

γ

)

Sigmoidal k3(u, v) = tanh(κ〈u, v〉 +Θ)
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SVM Results for Gaussian Kernel

γ = 0.5, C = 50
γ = 0.5, C = 1
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SVM Results for Gaussian Kernel (cont.)

γ = 0.02, C = 50 γ = 10, C = 50

See interactive demo.
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Bayes Decision and SVM (Gaussian Kernel)
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Neural Networks (2-2-1)
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Neural Networks (2-5-1)
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Neural Networks (2-20-1)
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One-Class SVM for Novelty Detection

Idea: enclose data with a hypersphere and classify new data as normal if it
falls within the hypersphere and otherwise as anomalous data.
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Minimum Enclosing Hypersphere

Given normal data X = {x1, x2, . . . , xm} ∈ R
d and let r be the radius of

the hypersphere and c ∈ F the center. To find the minimum enclosing
hypersphere we have to solve the following optimization problem:

minimize r2

subject to ‖Φ(xi )− c‖2 ≤ r2, i = 1, . . . ,m.

Lagrangian multiplier αi ≥ 0 for each constraint

L(c, r ,α) = r2 +
m∑

i=1

αi

{
‖Φ(xi )− c‖2 − r2

}
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Minimum Enclosing Hypersphere (cont.)

Setting the derivatives with respect to c and r to zero

∂L(c, r ,α)

∂c
= 2

m∑

i=1

αi(Φ(xi )− c) = 0

∂L(c, r ,α)

∂r
= 2r

(
1−

m∑

i=1

αi

)
= 0

one obtains the following equations

m∑

i=1

αi = 1 and c =
m∑

i=1

αiΦ(xi ). (1)
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Minimum Enclosing Hypersphere (cont.)

Inserting relation (1) into

L(c, r ,α) = r2 +

m∑

i=1

αi

{
‖Φ(xi )− c‖2 − r2

}

=

m∑

i=1

αi‖Φ(xi )− c‖2

=
m∑

i=1

αik(xi , xi )−
m∑

i ,j=1

αiαjk(xi , xj )

gives the dual form.3

3Note: In dual form we got rid of c and Φ(·).
T.Stibor (GSI) ML for Beginners 21th September 2020 - 25th September 2020



Minimum Enclosing Hypersphere (cont.)

To find α in dual form, solve optimization problem:

maximize W (α) =

m∑

i=1

αik(xi , xi )−
m∑

i ,j=1

αiαjk(xi , xj)

subject to

m∑

i=1

αi = 1, and αi ≥ 0, i = 1, . . . ,m.

Recall: Lagrange multiplier can be non-zero only if the corresponding
inequality constraint is an equality at the solution.
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Minimum Enclosing Hypersphere (cont.)
The KKT complementarity conditions are satisfied by the optimal
solutions α, (c, r)

αi

{
‖Φ(xi )− c‖2 − r2

}
, i = 1, . . . ,m.

This implies that only training examples xi that lie on the surface of the
optimal hypersphere have their corresponding αi > 0.
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Decision Function

f (x) = sgn(r2 − ‖Φ(x) − c‖2)

= sgn

(
r2 −

{
(Φ(x) · Φ(x)) − 2

m∑

i=1

αi (Φ(x) · Φ(xi ))

+

m∑

i ,j=1

αiαj(Φ(xi ) · Φ(xj))








= sgn

(
r2 −

{
k(x, x) − 2

m∑

i=1

αik(x, xi )

+
m∑

i ,j=1

αiαjk(xi , xj)
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Soft Enclosing Hypersphere

If we have some noise in our training set the “hard” enclosing hypersphere
approach may force a larger radius than should really be needed. In other
words, the solution would not be robust.

Aim: Find minimum enclosing hypersphere that contains (allmost) all
training examples, but not some small portion of extreme training
examples.
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Soft Enclosing Hypersphere (cont.)

Introduce slack variables ξ, ξi ≥ 0, i = 1, . . . ,m

minimize r2 + C

m∑

i=1

ξi

subject to ‖Φ(xi )− c‖2 ≤ r2 + ξi , ξi ≥ 0, i = 1, . . . ,m.

Lagrangian multiplier αi , βi ≥ 0 for each constraint

L(c, r ,α,β) = r2 + C

m∑

i=1

ξi

+

m∑

i=1

αi

{
‖Φ(xi )− c‖2 − r2 − ξi

}
−

m∑

i=1

βiξi
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Soft Enclosing Hypersphere (cont.)

Setting partial derivatives to 0 gives

m∑

i=1

αi = 1, c =

m∑

i=1

αiΦ(xi )

This leads to the dual form

minimize
m∑

i ,j=1

αiαjk(xi , xj )−
m∑

i=1

αik(xi , xi )

subject to 0 ≤ αi ≤ C ,

m∑

i=1

αi = 1
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Hyperplane One-Class SVM
Idea: Separate in high-dimensional feature space F , the points from the
origin (circled point) with a maximum distance, and allow ν ·m many
“outliers” which lie between the origin and the hyperplane, i.e. the −1
side.

w

ξ
‖w‖

ρ
‖w‖

+1

−1
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Hyperplane One-Class SVM (cont.)

Normal vector of the hyperplane is determined by solving the primal
quadratic optimization problem

minimize 1
2‖w‖2 + 1

νm

∑
i ξi − ρ (2)

subject to 〈w,Φ(xi )〉 ≥ ρ− ξi , ξi > 0, i = 1, . . . ,m. (3)

Lagrangian multiplier αi , βi ≥ 0 for each constraint

L(w, ξ, ρ,α,β) =
1

2
‖w‖2 + 1

νm

∑

i

ξi − ρ

−
m∑

i=1

αi(〈w,Φ(xi )〉 − ρ+ ξi )−
m∑

i=1

βiξi

Reformulating (2) and (3) to a dual optimization problem in terms of a
kernel function k(·, ·), one obtains
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Hyperplane One-Class SVM (cont.)

maximize 1
2

∑m
i ,j=1 αiαjk(xi , xj ) (4)

subject to 0 ≤ αi ≤ 1
νm

, i = 1, . . . ,m and
∑m

i=1 αi =1. (5)

Differentiating the primal with respect to w, one gets w =
∑m

i=1 αiΦ(xi ).

Recall KKT theorem: For αi > 0 the corresponding pattern xi satisfies

ρ = 〈w,Φ(xi )〉 =
m∑

j=1

αjk(xj , xi )
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Hyperplane One-Class SVM (cont.)

The decision function (left/right side of the hyperplane):

f (x) = sgn(〈w,Φ(xi )〉 − ρ)

= sgn

(
m∑

i=1

αik(xi , x)− ρ

)

ν-Property:

ν is an upper bound on the fraction of outliers.

ν is a lower bound on the fraction of Support Vectors.
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Hyperplane One-Class SVM Example

ν = 0.05 ν = 0.5

See interactive demo.
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Support Vector Regression

Basic idea: map the data x into a high-dimensional feature space F via a
nonlinear mapping Φ, and do linear regression in this space.

f (x) = 〈w,Φ(x)〉 + b with Φ : Rd → F ,w ∈ F .

Linear regression in a high dimensional feature space corresponds to
nonlinear regression in the low dimensional space R

d .

Vapnik’s ǫ-insensitive loss function:

|y − f (x)|ǫ := max{0, |y − f (x)| − ǫ}

Find function f (x) that has at most ǫ deviation from all the targets yi
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Support Vector Regression (cont.)

Estimate linear regression f (x) = 〈w,Φ(x)〉 + b leads to the problem of
minimizing the term

1

2
‖w‖2 + C

n∑

i=1

|yi − f (xi )|ǫ

In the soft margin case one needs two types of slack variables (ξ, ξ∗) for
the two cases f (xi )− yi > ǫ and yi − f (xi ) > ǫ.

x

x

x
x

x

x

xx

x

x
x

x

x

x

+ε−ε

x

ξ+ε

−ε
0

ξ

Figure is taken from Schölkopf’s and Smola’s book (Learning with Kernels)
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Support Vector Regression (cont.)

Optimization problem is given by:

minimize
1

2
‖w‖2 + C ·

n∑

i=1

(ξi + ξ∗i )

subject to
f (xi )− yi ≤ ǫ+ ξi
yi − f (xi ) ≤ ǫ+ ξ∗i
ξi , ξ

∗
i ≥ 0 for all i = 1, . . . , n
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Support Vector Regression (cont.)

Introducing Lagrange multipliers α,α∗ (dual form):

maximize −ǫ
n∑

i=1

(α∗
i + αi) +

n∑

i=1

(α∗
i − αi )yi

−1

2

n∑

i ,j

(α∗
i − αi )(α

∗
j − αj )k(xi , xj )

subject to 0 ≤ αi , α
∗
i ≤ C for all i = 1, . . . , n and

n∑

i=1

(α∗
i − αi) = 0

Regression estimate takes the form

f (x) =

n∑

i=1

(α∗
i − αi )k(xi , x) + b
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Support Vector Regression (cont.)

Offset b can be computed by exploiting Karush-Kuhn-Tucker conditions:
f (xi )− yi ≤ ǫ+ ξi becomes an equality with ξi = 0 if 0 < αi < C and
yi − f (xi ) ≤ ǫ+ ξ∗i becomes an equality with ξ∗i = 0 if 0 < α∗

i < C that is:

αi (ǫ+ ξi − yi + 〈w,Φ(xi )〉+ b) = 0

α∗
i (ǫ+ ξ∗i + yi − 〈w,Φ(xi )〉 − b) = 0

and leads to solution

b = yi − 〈w,Φ(xi )〉 − ǫ for αi ∈ (0,C )

b = yi − 〈w,Φ(xi )〉+ ǫ for α∗
i ∈ (0,C )
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Support Vector Regression Example
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Support vector regression estimation

x

y

library(kernlab);

x <- seq(-20,20,0.1);

y <- sin(x)/x + rnorm(401,sd=0.03);

# train SVM

reg.svm <- ksvm(x,y,epsilon=0.01,kpar=list(sigma=16),cross=3);

plot(x,y,type="l",lwd=3);

lines(x,predict(reg.svm,x),col="red",lwd=3);
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Summary & End

SVM’s are (from my biased perspective) simpler to train than neural
networks.

SVM’ are useful classification and regression techniques on “small”
data sets.

Should be in your machine learning toolbox along with deep neural
networks.

Thank you for your attention
Feel free to contact me t.stibor@gsi.de
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