Non-separable Case

This data set is not properly separable with lines (also when using many slack variables)

Separate in Higher-Dim. Space

Map data in higher-dimensional space and separate it there with a hyperplane

Feature Space

Apply the mapping

$$
\begin{aligned}
\Phi: \mathbb{R}^{N} & \rightarrow \mathcal{F} \\
\mathbf{x} & \mapsto \Phi(\mathbf{x})
\end{aligned}
$$

to the data $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m} \in \mathcal{X}$ and construct separating hyperplane in \mathcal{F} instead of \mathcal{X}. The samples are preprocessed as $\left(\Phi\left(\mathbf{x}_{1}\right), y_{1}\right), \ldots,\left(\Phi\left(\mathbf{x}_{m}\right), y_{m}\right) \in \mathcal{F} \times\{ \pm 1\}$.

Obtained decision function:

$$
\begin{aligned}
f(\mathbf{x}) & =\operatorname{sgn}\left(\sum_{i=1}^{m} y_{i} \alpha_{i}\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}_{i}\right)\right\rangle+b\right) \\
& =\operatorname{sgn}\left(\sum_{i=1}^{m} y_{i} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)+b\right)
\end{aligned}
$$

How about patters $\mathbf{x} \in \mathbb{R}^{N}$ and product features of order d ? $\operatorname{Dim}(\mathcal{F})$ grows like N^{d}. Example $N=16 \times 16$, and $d=5 \longrightarrow$ dimension 10^{10}.

Kernels

A kernel is a function k, such that for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$

$$
k(\mathbf{x}, \mathbf{y})=\langle\Phi(\mathbf{x}), \Phi(\mathbf{y})\rangle
$$

where Φ is a mapping from \mathcal{X} to an dot product feature space \mathcal{F}.

The $m \times m$ matrix K with elements $K_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ is called kernel matrix or Gram matrix. The kernel matrix is symmetric and positive semi-definite, i.e. for all $a_{i} \in \mathbb{R}, i=1, \ldots, m$, we have

$$
\sum_{i, j=1}^{m} a_{i} a_{j} K_{i j} \geq 0
$$

Positive semi-definite kernels are exactly those giving rise to a positive semi-definite kernel matrix K for all m and all sets $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\} \subseteq \mathcal{X}$.

The Kernel Trick Example

Example : compute 2nd order products of two "pixels", i.e.

$$
\begin{aligned}
\mathbf{x}=\left(x_{1},\right. & \left.x_{2}\right) \text { and } \Phi(\mathbf{x})=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \\
\langle\Phi(\mathbf{x}), \Phi(\mathbf{z})\rangle & =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right)^{T} \\
& =\left(\left(x_{1}, x_{2}\right)\left(z_{1}, z_{2}\right)^{T}\right)^{2} \\
& =\left(\mathbf{x} \cdot \mathbf{z}^{T}\right)^{2} \\
& =: k(\mathbf{x}, \mathbf{z})
\end{aligned}
$$

Kernel without knowing Φ

Recall: mapping $\Phi: \mathbb{R}^{N} \rightarrow \mathcal{F}$. SVM depends on the data through dot products in \mathcal{F}, i.e. functions of the form

$$
\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle
$$

- With k such that $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle$, it is not necessary to even know what $\Phi(\mathbf{x})$ is.
Example: $k(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|^{2}}{\gamma}\right)$, in this example \mathcal{F} is infinite dimensional.

Feature Space (Optimization Problem)

Quadratic optimization problem (soft margin) with kernel:

$$
\begin{array}{ll}
\text { maximize } & W(\alpha)=\sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\text { subject to } & 0 \leq \alpha_{i} \leq C, \quad i=1, \ldots, m \text { and } \sum_{i=1}^{m} \alpha_{i} y_{i}=0
\end{array}
$$

(Standard) Kernels

Linear $k_{0}(\mathbf{u}, \mathbf{v})=\langle\mathbf{u}, \mathbf{v}\rangle$
Polynomial $k_{1}(\mathbf{u}, \mathbf{v})=(\langle\mathbf{u}, \mathbf{v}\rangle+\Theta)^{d}$
Gaussian $k_{2}(\mathbf{u}, \mathbf{v})=\exp \left(-\frac{\|\mathbf{u}-\mathbf{v}\|^{2}}{\gamma}\right)$
Sigmoidal $k_{3}(\mathbf{u}, \mathbf{v})=\tanh (\kappa\langle\mathbf{u}, \mathbf{v}\rangle+\Theta)$

SVM Results for Gaussian Kernel

$$
\gamma=0.5, C=50
$$

$$
\gamma=0.5, C=1
$$

SVM Results for Gaussian Kernel (cont.)

$$
\gamma=0.02, C=50
$$

$$
\gamma=10, C=50
$$

See interactive demo.

Bayes Decision and SVM (Gaussian Kernel)

Neural Networks (2-2-1)

Neural Networks (2-5-1)

Neural Networks (2-20-1)

NN (2-20-1) decision region (run 1)

NN (2-20-1) decision region (run 2)

One-Class SVM for Novelty Detection

Idea: enclose data with a hypersphere and classify new data as normal if it falls within the hypersphere and otherwise as anomalous data.

Minimum Enclosing Hypersphere

Given normal data $\mathcal{X}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right\} \in \mathbb{R}^{d}$ and let r be the radius of the hypersphere and $\mathbf{c} \in \mathcal{F}$ the center. To find the minimum enclosing hypersphere we have to solve the following optimization problem:

$$
\begin{aligned}
\operatorname{minimize} & r^{2} \\
\text { subject to } & \left\|\Phi\left(\mathbf{x}_{i}\right)-\mathbf{c}\right\|^{2} \leq r^{2}, \quad i=1, \ldots, m
\end{aligned}
$$

Lagrangian multiplier $\alpha_{i} \geq 0$ for each constraint

$$
L(\mathbf{c}, r, \boldsymbol{\alpha})=r^{2}+\sum_{i=1}^{m} \alpha_{i}\left\{\left\|\Phi\left(\mathbf{x}_{i}\right)-\mathbf{c}\right\|^{2}-r^{2}\right\}
$$

Minimum Enclosing Hypersphere (cont.)

Setting the derivatives with respect to \mathbf{c} and r to zero

$$
\begin{aligned}
& \frac{\partial L(\mathbf{c}, r, \boldsymbol{\alpha})}{\partial \mathbf{c}}=2 \sum_{i=1}^{m} \alpha_{i}\left(\Phi\left(\mathbf{x}_{i}\right)-\mathbf{c}\right)=\mathbf{0} \\
& \frac{\partial L(\mathbf{c}, r, \boldsymbol{\alpha})}{\partial r}=2 r\left(1-\sum_{i=1}^{m} \alpha_{i}\right)=0
\end{aligned}
$$

one obtains the following equations

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{i}=1 \text { and } \mathbf{c}=\sum_{i=1}^{m} \alpha_{i} \Phi\left(\mathbf{x}_{i}\right) . \tag{1}
\end{equation*}
$$

Minimum Enclosing Hypersphere (cont.)

Inserting relation (1) into

$$
\begin{aligned}
L(\mathbf{c}, r, \boldsymbol{\alpha}) & =r^{2}+\sum_{i=1}^{m} \alpha_{i}\left\{\left\|\Phi\left(\mathbf{x}_{i}\right)-\mathbf{c}\right\|^{2}-r^{2}\right\} \\
& =\sum_{i=1}^{m} \alpha_{i}\left\|\Phi\left(\mathbf{x}_{i}\right)-\mathbf{c}\right\|^{2} \\
& =\sum_{i=1}^{m} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}_{i}\right)-\sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
\end{aligned}
$$

gives the dual form. ${ }^{3}$
${ }^{3}$ Note: In dual form we got rid of \mathbf{c} and $\Phi(\cdot)$.

Minimum Enclosing Hypersphere (cont.)

To find $\boldsymbol{\alpha}$ in dual form, solve optimization problem:

$$
\begin{array}{ll}
\operatorname{maximize} & W(\boldsymbol{\alpha})=\sum_{i=1}^{m} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}_{i}\right)-\sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\text { subject to } & \sum_{i=1}^{m} \alpha_{i}=1, \text { and } \alpha_{i} \geq 0, \quad i=1, \ldots, m
\end{array}
$$

Recall: Lagrange multiplier can be non-zero only if the corresponding inequality constraint is an equality at the solution.

Minimum Enclosing Hypersphere (cont.)

The KKT complementarity conditions are satisfied by the optimal solutions $\boldsymbol{\alpha},(\mathbf{c}, r)$

$$
\alpha_{i}\left\{\left\|\Phi\left(\mathbf{x}_{i}\right)-\mathbf{c}\right\|^{2}-r^{2}\right\}, \quad i=1, \ldots, m
$$

This implies that only training examples \mathbf{x}_{i} that lie on the surface of the optimal hypersphere have their corresponding $\alpha_{i}>0$.

Decision Function

$$
\begin{aligned}
f(\mathbf{x})= & \operatorname{sgn}\left(r^{2}-\|\Phi(\mathbf{x})-\mathbf{c}\|^{2}\right) \\
= & \operatorname{sgn}\left(r^{2}-\left\{(\Phi(\mathbf{x}) \cdot \Phi(\mathbf{x}))-2 \sum_{i=1}^{m} \alpha_{i}\left(\Phi(\mathbf{x}) \cdot \Phi\left(\mathbf{x}_{i}\right)\right)\right.\right. \\
& \left.\left.+\sum_{i, j=1}^{m} \alpha_{i} \alpha_{j}\left(\Phi\left(\mathbf{x}_{i}\right) \cdot \Phi\left(\mathbf{x}_{j}\right)\right)\right\}\right) \\
= & \operatorname{sgn}\left(r^{2}-\left\{k(\mathbf{x}, \mathbf{x})-2 \sum_{i=1}^{m} \alpha_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)\right.\right. \\
& \left.\left.+\sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right\}\right)
\end{aligned}
$$

Soft Enclosing Hypersphere

If we have some noise in our training set the "hard" enclosing hypersphere approach may force a larger radius than should really be needed. In other words, the solution would not be robust.

Aim: Find minimum enclosing hypersphere that contains (allmost) all training examples, but not some small portion of extreme training examples.

Soft Enclosing Hypersphere (cont.)

Introduce slack variables $\boldsymbol{\xi}, \xi_{i} \geq 0, i=1, \ldots, m$

$$
\begin{array}{cl}
\text { minimize } & r^{2}+C \sum_{i=1}^{m} \xi_{i} \\
\text { subject to } & \left\|\Phi\left(\mathbf{x}_{i}\right)-\mathbf{c}\right\|^{2} \leq r^{2}+\xi_{i}, \quad \xi_{i} \geq 0, i=1, \ldots, m
\end{array}
$$

Lagrangian multiplier $\alpha_{i}, \beta_{i} \geq 0$ for each constraint

$$
\begin{aligned}
L(\mathbf{c}, r, \boldsymbol{\alpha}, \boldsymbol{\beta})= & r^{2}+C \sum_{i=1}^{m} \xi_{i} \\
& +\sum_{i=1}^{m} \alpha_{i}\left\{\left\|\Phi\left(\mathbf{x}_{i}\right)-\mathbf{c}\right\|^{2}-r^{2}-\xi_{i}\right\}-\sum_{i=1}^{m} \beta_{i} \xi_{i}
\end{aligned}
$$

Soft Enclosing Hypersphere (cont.)

Setting partial derivatives to $\mathbf{0}$ gives

$$
\sum_{i=1}^{m} \alpha_{i}=1, \quad \mathbf{c}=\sum_{i=1}^{m} \alpha_{i} \Phi\left(\mathbf{x}_{i}\right)
$$

This leads to the dual form

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i, j=1}^{m} \alpha_{i} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)-\sum_{i=1}^{m} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}_{i}\right) \\
\text { subject to } & 0 \leq \alpha_{i} \leq C, \quad \sum_{i=1}^{m} \alpha_{i}=1
\end{aligned}
$$

Hyperplane One-Class SVM

Idea: Separate in high-dimensional feature space \mathcal{F}, the points from the origin (circled point) with a maximum distance, and allow $\nu \cdot m$ many "outliers" which lie between the origin and the hyperplane, i.e. the -1 side.

Hyperplane One-Class SVM (cont.)

Normal vector of the hyperplane is determined by solving the primal quadratic optimization problem

$$
\begin{array}{rc}
\operatorname{minimize} & \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{1}{\nu m} \sum_{i} \xi_{i}-\rho \\
\text { subject to } & \left\langle\mathbf{w}, \Phi\left(\mathbf{x}_{i}\right)\right\rangle \geq \rho-\xi_{i}, \xi_{i}>0, i=1, \ldots, m . \tag{3}
\end{array}
$$

Lagrangian multiplier $\alpha_{i}, \beta_{i} \geq 0$ for each constraint

$$
\begin{aligned}
L(\mathbf{w}, \boldsymbol{\xi}, \rho, \boldsymbol{\alpha}, \boldsymbol{\beta})= & \frac{1}{2}\|\mathbf{w}\|^{2}+\frac{1}{\nu m} \sum_{i} \xi_{i}-\rho \\
& -\sum_{i=1}^{m} \alpha_{i}\left(\left\langle\mathbf{w}, \Phi\left(\mathbf{x}_{i}\right)\right\rangle-\rho+\xi_{i}\right)-\sum_{i=1}^{m} \beta_{i} \xi_{i}
\end{aligned}
$$

Reformulating (2) and (3) to a dual optimization problem in terms of a kernel function $k(\cdot, \cdot)$, one obtains

Hyperplane One-Class SVM (cont.)

$$
\begin{align*}
& \operatorname{maximize} \\
& \text { subject to } 0 \leq \alpha_{i} \leq \frac{1}{2} \sum_{i, j=1}^{m}, i=1, \ldots, m \text { and } \sum_{i=1}^{m} \alpha_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \tag{4}
\end{align*}
$$

Differentiating the primal with respect to \mathbf{w}, one gets $\mathbf{w}=\sum_{i=1}^{m} \alpha_{i} \Phi\left(\mathbf{x}_{i}\right)$.
Recall KKT theorem: For $\alpha_{i}>0$ the corresponding pattern \mathbf{x}_{i} satisfies

$$
\rho=\left\langle\mathbf{w}, \Phi\left(\mathbf{x}_{i}\right)\right\rangle=\sum_{j=1}^{m} \alpha_{j} k\left(x_{j}, x_{i}\right)
$$

Hyperplane One-Class SVM (cont.)

The decision function (left/right side of the hyperplane):

$$
\begin{aligned}
f(\mathbf{x}) & =\operatorname{sgn}\left(\left\langle\mathbf{w}, \Phi\left(\mathbf{x}_{i}\right)\right\rangle-\rho\right) \\
& =\operatorname{sgn}\left(\sum_{i=1}^{m} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)-\rho\right)
\end{aligned}
$$

ν-Property:

- ν is an upper bound on the fraction of outliers.
- ν is a lower bound on the fraction of Support Vectors.

Hyperplane One-Class SVM Example

$$
\nu=0.05
$$

$$
\nu=0.5
$$

See interactive demo.

Support Vector Regression

Basic idea: map the data \mathbf{x} into a high-dimensional feature space \mathcal{F} via a nonlinear mapping Φ, and do linear regression in this space.

$$
f(\mathbf{x})=\langle\mathbf{w}, \Phi(\mathbf{x})\rangle+b \text { with } \Phi: \mathbb{R}^{d} \rightarrow \mathcal{F}, \mathbf{w} \in \mathcal{F}
$$

Linear regression in a high dimensional feature space corresponds to nonlinear regression in the low dimensional space \mathbb{R}^{d}.

Vapnik's ϵ-insensitive loss function:

$$
|y-f(\mathbf{x})|_{\epsilon}:=\max \{0,|y-f(\mathbf{x})|-\epsilon\}
$$

Find function $f(\mathbf{x})$ that has at most ϵ deviation from all the targets y_{i}

Support Vector Regression (cont.)

Estimate linear regression $f(\mathbf{x})=\langle\mathbf{w}, \Phi(\mathbf{x})\rangle+b$ leads to the problem of minimizing the term

$$
\frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{n}\left|y_{i}-f\left(\mathbf{x}_{i}\right)\right|_{\epsilon}
$$

In the soft margin case one needs two types of slack variables $\left(\xi, \xi^{*}\right)$ for the two cases $f\left(\mathbf{x}_{i}\right)-y_{i}>\epsilon$ and $y_{i}-f\left(\mathbf{x}_{i}\right)>\epsilon$.

Figure is taken from Schölkopf's and Smola's book (Learning with Kernels)

Support Vector Regression (cont.)

Optimization problem is given by:

$$
\begin{array}{cl}
\text { minimize } & \frac{1}{2}\|\mathbf{w}\|^{2}+C \cdot \sum_{i=1}^{n}\left(\xi_{i}+\xi_{i}^{*}\right) \\
& f\left(\mathbf{x}_{i}\right)-y_{i} \leq \epsilon+\xi_{i} \\
\text { subject to } & y_{i}-f\left(\mathbf{x}_{i}\right) \leq \epsilon+\xi_{i}^{*} \\
& \xi_{i}, \xi_{i}^{*} \geq 0 \quad \text { for all } i=1, \ldots, n
\end{array}
$$

Support Vector Regression (cont.)

Introducing Lagrange multipliers α, α^{*} (dual form):

$$
\begin{array}{ll}
\text { maximize } & -\epsilon \sum_{i=1}^{n}\left(\alpha_{i}^{*}+\alpha_{i}\right)+\sum_{i=1}^{n}\left(\alpha_{i}^{*}-\alpha_{i}\right) y_{i} \\
& -\frac{1}{2} \sum_{i, j}^{n}\left(\alpha_{i}^{*}-\alpha_{i}\right)\left(\alpha_{j}^{*}-\alpha_{j}\right) k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\
\text { subject to } & 0 \leq \alpha_{i}, \alpha_{i}^{*} \leq C \text { for all } i=1, \ldots, n \text { and } \\
& \sum_{i=1}^{n}\left(\alpha_{i}^{*}-\alpha_{i}\right)=0
\end{array}
$$

Regression estimate takes the form

$$
f(\mathbf{x})=\sum_{i=1}^{n}\left(\alpha_{i}^{*}-\alpha_{i}\right) k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b
$$

Support Vector Regression (cont.)

Offset b can be computed by exploiting Karush-Kuhn-Tucker conditions: $f\left(\mathbf{x}_{i}\right)-y_{i} \leq \epsilon+\xi_{i}$ becomes an equality with $\xi_{i}=0$ if $0<\alpha_{i}<C$ and $y_{i}-f\left(\mathbf{x}_{i}\right) \leq \epsilon+\xi_{i}^{*}$ becomes an equality with $\xi_{i}^{*}=0$ if $0<\alpha_{i}^{*}<C$ that is:

$$
\begin{aligned}
\alpha_{i}\left(\epsilon+\xi_{i}-y_{i}+\left\langle\mathbf{w}, \Phi\left(\mathbf{x}_{i}\right)\right\rangle+b\right) & =0 \\
\alpha_{i}^{*}\left(\epsilon+\xi_{i}^{*}+y_{i}-\left\langle\mathbf{w}, \Phi\left(\mathbf{x}_{i}\right)\right\rangle-b\right) & =0
\end{aligned}
$$

and leads to solution

$$
\begin{aligned}
b & =y_{i}-\left\langle\mathbf{w}, \Phi\left(\mathbf{x}_{i}\right)\right\rangle-\epsilon & \text { for } \alpha_{i} \in(0, C) \\
b & =y_{i}-\left\langle\mathbf{w}, \Phi\left(\mathbf{x}_{i}\right)\right\rangle+\epsilon & \text { for } \alpha_{i}^{*} \in(0, C)
\end{aligned}
$$

Support Vector Regression Example


```
library(kernlab);
x <- seq(-20,20,0.1);
y <- sin(x)/x + rnorm(401,sd=0.03);
# train SVM
reg.svm <- ksvm(x,y,epsilon=0.01,kpar=list(sigma=16),cross=3);
plot(x,y,type="l",lwd=3);
lines(x,predict(reg.svm,x),col="red",lwd=3);
```


Summary \& End

- SVM's are (from my biased perspective) simpler to train than neural networks.
- SVM' are useful classification and regression techniques on "small" data sets.
- Should be in your machine learning toolbox along with deep neural networks.

Thank you for your attention

Feel free to contact me t.stibor@gsi.de

