.ggtfé;gon Lab &WEPSCI

Custom Layers and Loss

Functions

Sept. 24, 2020
David Lawrence -- JLab

.ggtf;gon Lab

Motivation

Deep Learning has enabled a revolution:
Generate large, complex functions implementing many
subtle correlations without having to develop a detailed

mathematical model.

Black boxes are now very easy to build

Detailed understanding of all aspects of every tool is no
longer required*

*you still have to understand what the black box does, even if you don’t know how it does it. >

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

Jefferéon Lab
Motivation

Downside:
Simple, non-linear functions may take millions of parameters to

mimic using standard Sequential networks and activation
functions.

OK if your project requires infrequent training
and inference.

Not OK if you deal with PB of data that must be
run through a model quickly

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

.ggtfé;gon Lab &WEPSCI
Motivation

What if you know something about the functional form
that could be applied to your problem?

0 Y= WX, + WX, easy!

Y = WO(XO * X1) ok, | think there's a way to do this

y =X3° *x" +wXxlog(x,) - w,csc(X, /X,) + ... -

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

Jeft

_ on Lab
Toy problem: Multiply 2 numbers v = z5°z;"

Create a “deep” Sequential model with several
Dense layers that alternate using “linear” and “tanh”

functions.

Train on dataset with inputs between -10 and +10 in
0.1 increments (answers between -100 and +100)

Train 500 epochs with batch size 1000

Use GPUs to train

x1000 faster

MAE for Two number multiplication

103 4 —— MAE (training data)

mean absolute error
VS.
epoch

102 4

MAE value

0 100 200 300 400 500
No. epoch

gyePscl

Layer (type) Output Shape Param #
waveform (InputLayer) [(None, 2)] 0
top_layerl (Flatten) (None, 2) 0
common_layerl (Dense) (None, 1000) 3000
common_layer2 (Dense) (None, 1000) 1001000
common_layer3 (Dense) (None, 1000) 1001000
common_layer4 (Dense) (None, 1000) 1001000
common_layer5 (Dense) (None, 1000) 1001000
common_outl (Dense) (None, 1000) 1001000
common_out2 (Dense) (None, 1000) 1001000
common_out3 (Dense) (None, 200) 200200
outputs (Dense) (None, 1) 201
Total params: 6,209,401
Trainable params: 6,209,401
Non-trainable params: @

5

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

Jefferson Lab %ﬁ?EPSCI
Deep Network vs. Truth of 2 number multiplication

" | | |

dots represent 100 points 5

11

difference between deep
network model and truth

30

10

25

uncertainty ~< 0.7%

20

Model

first factor ranged from 2-3 ||
in 0.01 increments

10

second factor ranged from [|
3-4 in 0.01 increments 51
| I !

T T 0-
10 11 12 0.045 0.050 0.065

9
Truth Model - Truth

Model could be modified and training tuned and extended

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

—

e

on Lab

Custom layer with Keras @SEPSCI

#

ProductLayer

#

This defines a layer that takes the product of the inputs,
each raised to the power of its weight. The trainable

parameter can be set to False to make it non-trainable.

n.b. If you make this trainable, the inputs cannot be

negative numbers!

See details on this in the following cell.

class ProductLayer(tf.keras.layers.Layer):
def __init_ (self, units=1, trainable=True, initial_exponent=2.01): call () .
super(ProductLayer, self).__init_ () -

def

self.units
self.trainable

= units
= trainable

self.initial_exponent = initial_exponent

build(self, input_shape):
print('input_shape='+str(input_shape))

myinitializer = tf.keras.initializers.Constant(self.initial_exponent) parameters for saving with model
self.w = self.add_weight(

shape =

initializer =

trainable =
)

(self.units, input_shape[-1]),
myinitializer,
self.trainable,

self.b = self.add_weight(

shape =
initializer =
trainable =

(self.units,),
"zeros",
False

__init_ ():
Save any parameters your layer takes

build():
Create/initialize weights (if any)
Define layer operations using weights

get_config():
Return dictionary of layer configuration

def

def

call(self, inputs):

inputs has shape (None, 2)

self.w has shape (1, 2)

tmp has shape (None, 2)

output has shape (None, 1) _ l) Tl)i
tmp = K.pow(inputs, self.w) y — Uy _I_ .T,L
myout = K.prod(tmp, keepdims=True, axis=1) + self.b

print('inputs.shape: ' + str(inputs.shape)) 0
print('self.w.shape: ' + str(self.w.shape)) ?
print("’ tmp.shape: ' + str(tmp.shape))

print(' myout.shape: ' + str(myout.shape))

return myout

get_config(self):

config = super(ProductLayer, self).get_config()

config.update({"units": self.units, "trainable": self.trainable, "initial_exponent": self.initial_exponent})
return config

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

Jefferéon Lab

Custom Layer with PyTorch

1 # Extend nn.Module class and create a full custom layer that can be trained

2 class ProductLayer(nn.Module):
3 # Initialization

4 def init_(self, input size, output_size):

5 super(). init ()

6 self.input size, self.output size = input size, output_size
7 weights = torch.Tensor(output_size, input_size)
8 self.weights = nn.Parameter(weights)

9 # bias = torch.Tensor(output size)
10 # self.bias = nn.Parameter(bias)
11
12 torch.nn.init.uniform (self.weights, 0, 1)
13
14 # Forward operations
15 def forward(self, x):
16 tmp = torch.pow(x, self.weights)
17 return torch.prod(tmp)

1 # Define a model that contains our custom layer

2 # Other layers can also be added but we don't really need them!
3 class BasicModel(nn.Module):

4 def init_(self):

5 super(). init ()

6 # self.conv = nn.Conv2d(16, 33, 3, stride=2)

7 self.linear = ProductLayer(2, 1)

8

9 def forward(self, x):

10 # x = self.conv(x)

11 return self.linear(x)

Example - how an in
Input to our layer

Lab

@HEPSCI
O PyTorch
els definedas: Y = \/CB_():C%

Epoch: 0
Weights:

MAE: 25.78905786835406
tensor([[1.4386, 0.9737]])

Epoch: 1
Weights:

MAE: 15.266186653409173
tensor([[1.1287, 1.3200]])

Epoch: 2
Weights:

MAE: 11.002496418743558
tensor([[0.9659, 1.4993]])

Epoch: 3
Weights:

MAE: 7.239018196825884
tensor([[0.8063, 1.6748]])

Epoch: 4
Weights:

MAE: 2.8084900026091315
tensor([[0.5996, 1.9018]])

Epoch: 5
Weights:

MAE: 0.11658574497252296
tensor([[0.5004, 1.9999]])
Average loss is too small, let me reduce learning rate now!! ———--—emmmmmmeen

511, let me reduce learning rate now!! =——-—————eemeoeeo
Average Loss is smaller than 0.005, Let's stop training further!! -——-—--eeewo

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

Jefferson Lab Model with Lambda layer §oepsci

from tensorflow.keras.layers import Lambda

MyProductLambda Lambda Layers:

def MyProductLambda(inputs):
tmp = K.pow(inputs, (0.5, 2.0))
return K.prod(tmp, keepdims=True, axis=1)

e No trainable weights

:: DefineModellambda From Keras Documentation
R S N N S o e e e s The main reason to subclass
def DefineModellLambda(): tf.keras.layers.Layer instead of
using a Lambda layer is saving and
Build the network model with 2 inputs and one output. inspecting a Model. Lambda layers
inputs = Input(shape=(NINPUTS,), name='inputs') are saved by serializing the Python
output = Lambda(MyProductLambda, output_shape=(1,))(inputs) bytecode, whereas subclassed
model = Model(inputs=inputs, outputs=output) Layers can be saved via overriding
their get_config method. Overriding
opt = Adadelta(clipnorm=1.0) get_config improves the portability
model.compile(loss='mse', optimizer=opt, metrics=['mae', 'mse', 'accuracy']) of Models. Models that rely on
subclassed Layers are also often
return model easier to visualize and reason about.

model_lambda = DefineModelLambda()

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer

Je ’-

Backend functions

on Lab

Custom loss and custom layer functions are NOT called for
every set of inputs

They are called ONCE to define a set of operations (ops)

Keras/Tensorflow can then:
o Take derivatives of operations
o Optimize for the hardware the model runs on

backend functions allow

The backend functions allow one to build up a set of the system to do a whole
. .. .] lot of optimization beneath

operations similar to how one builds a network from multiple the surface

layers

10
Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

Je ; on Lab

A simple backend function

tf.keras.backend.exp

O View source on GitHub

Element-wise exponential.

@ View aliases

tf.keras.backend.exp(
X

)

Arguments

X Tensor or variable.

Returns

A tensor.

A B C

3x2
D E F
e eB g€

3x2
eP efF ef

Custom Layers and Loss Functions -

David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

gyePscl

dimension 0
_—)

L uoisuawip

11

.ggtfé;gon Lab &WEPSCI
A slightly less simple backend function

tf. keras.backend.dot y (2x3) X (3x2) S
- N
'E TensorFlow 1 version O View source on GitHub G H A B C N
|| °
Multiplies 2 tensors (and/or variables) and returns a tensor. I J D E F
€ View aliases K L
_) loops over last

dimension in x and

tf.keras.backend.dot(
. @ next-to-last
) dimension in y

g)

Arguments (GA+HD) (GB+HE) (GC+HF)
; 3x3
x : : (IA+JD) (IB+JE) (IC+JF)
y ensor or variable.
- (KA+LD) (KB+LE) (KC+LF)
A tensor, dot product of x and y. \ —/ 12

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

Jefferson Lab ﬁﬁ?EPSCI
A slightly less simple backend function

tf.keras.backend.dot .
Testing dot vs batch_dot
import tensorflow.keras.backend as K
1? TensorFlow 1 version O View source on GitHub x = K. placeholder(shape=(3, 2))

y = K.placeholder(shape=(2, 3))

Multiplies 2 tensors (and/or variables) and returns a tensor. xy = K.dot(x,y)
print(xy.shape)

& View aliases (3, 3)
loops over last
T —— x = K.placeholder(shape=(32, 28, 3)) dimension in x and
T - y = K.placeholder(shape=(3, 4)) next-to-last
: xy = K.dot(x,y) dimension in y
print(xy.shape)
Arguments (32, 28, 4)
x Tensor or variable. x = K.placeholder(shape=(2, 7, 3))
y Tensor or variable. Y K.placeholder(shape=(6, 4, 3, 5))
xy = K.dot(x,y)
print(xy.shape)
Returns

(2 7.6, 45°5)

A tensor, dot product of x and y.

13

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

.ggtfé/t:gon Lab &WEPSCI
A slight problem: Data comes in batches

e During training, inputs and labels are presented in batches.
The size of the batch may actually vary during training.

e The batch size is not known when defining the model and so
is represented as None in the first dimension of the shape.

e This presents a problem when using dot

x = K.placeholder(shape=(None, 8, 7, 6))

y = K.placeholder(shape=(None, 7, 5, 6, 2))
xy = K.dot(x,y)

print(xy.shape)

(None, 8, 7, None, 7, 5, 2)

f

output should only include batch

size(i.e. None) in the first dimension!
14

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

.;gt{e’rgon Lab

batch dot to the rescue!

tf.keras.backend.batch_dot

1: TensorFlow 1 version O View source on GitHub

Batchwise dot product.

@ View aliases

€0
tf.keras.backend.batch_dot(
X, y, axes=None

)

batch_dot is used to compute dot product of x and y when x and y are data in batch, i.e. in a shape of
(batch_size, :). batch_dot results in a tensor or variable with less dimensions than the input. If the number of
dimensions is reduced to 1, we use expand_dims to make sure that ndim is at least 2.

Arguments

X: Keras tensor or variable with ndim >= 2.

y Keras tensor or variable with ndim >= 2.

axes Tuple or list of integers with target dimensions, or single integer. The sizes of x.shape[axes[8]]
and y.shape[axes[1]] should be equal.

Returns

A tensor with shape equal to the concatenation of X's shape (less the dimension that was summed over) and y's shape (less the batch
dimension and the dimension that was summed over). If the final rank is 1, we reshape it to (batch_size, 1).

None = batch size

>/ (None x 2 x 3) X (None x 3 x 2)

A B C

D EF

gyePscl

dimension 1
_—

Z uoisusuip
6@
>
%
>
<
2

you specify exactly
which dimension of

Custom Layers and Loss Functions - David Lawrence—= ML Workshop Sept. 21-25, 2020

_

(IA+JD)

(KA+LD)

(IB+JE) (IC+JF)

(KB+LE) (KC+LF)

- x and

\/@\/ looped
|

(GA+HD) (GB+HE) (GC+HF)\

y should be

None x 3 x 3

15

Jefferéon Lab

batch_dot

tf.keras.backend.batch_dot

1F TensorFlow 1 version O View source on GitHub

Batchwise dot product.

@ View aliases

€0
tf.keras.backend.batch_dot(
X, y, axes=None

)

batch_dot is used to compute dot product of x and y when x and y are data in batch, i.e. in a shape of
(batch_size, :). batch_dot results in a tensor or variable with less dimensions than the input. If the number of
dimensions is reduced to 1, we use expand_dims to make sure that ndim is at least 2.

Arguments

X Keras tensor or variable with ndim >= 2.

y Keras tensor or variable with ndim >= 2.

axes Tuple or list of integers with target dimensions, or single integer. The sizes of x.shape[axes[8]]
and y.shape[axes[1]] should be equal.

Returns

A tensor with shape equal to the concatenation of X's shape (less the dimension that was summed over) and y's shape (less the batch
dimension and the dimension that was summed over). If the final rank is 1, we reshape it to (batch_size, 1).

dot

batch_dot

A

gyEPSCI

x = K.placeholder(shape=(None, 8, 7, 6))

y = K.placeholder(shape=(None, 7, 5, 6, 2))
xy = K.dot(x,y)

print(xy.shape)

(None, 8, 7, None, 7, 5, 2)

(2]
-
~

x = K.placeholder(shape=(None, 6))

y = K.placeholder(shape=(None, 7, 5, 6, 2))
xy = K.batch_dot(x,y)

print(xy.shape)

(None, 8, 7, 7, 5, 2)

x = K.placeholder(shape=(None, 8, 7, 6))

y = K.placeholder(shape=(None, 7, 5, 6, 2))
xy = K.batch_dot(x,y, axes=(2,1))
print(xy.shape)

(None, 8, 6, 5, 6, 2)

you can also specify which
axes to loop over!

16

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

.ggtfé;gon Lab
Example: Charged Particle Tracking

Goal is to get 5 parameter state

vector at the vertex
(3-momentum + 2-position)

Also need the covariance matrix
(15 parameters)

Most common solution is to use
Kalman filter

o Provides both state vector and
covariance matrix

Suppose we have a working Kalman
filter solution, but want to develop an

ML model that reproduces it.
(surrogate model)

gyEPSCI

charged track
vertex

- beamline _ _je="HiH _ _ _ _ L _ _ _ é___ S - -

drift chambers

17

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

Jefferéon Lab

* Model training = Curve fitting

model output model input

labels
mse is the same as Iosi \[\ /2
X2 minimization 2 Yi — f(x’b)]
X = 52
i.e. Minimize number of o’s 7

the model is from data by
adjusting model parameters

Xz2 = 5§ZT . C_l . 5‘;2 generalize

0, represents uncertainty in
the y. values

- —

"2 - label model

O¢/p: 9a/p:9¢ Oq/p9tanl OTq/p,9D Oq/p,0z = \|S. — 8;)
2
04 O $O0tanl 040D 040, §' —
_ 2
C o Jtanl OtanlOD OtanlO 2
covariance
matrix 0-2D opo,
. . . . 9 - -
- o-z . 18

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

on Lab
Using custom loss to fit a Tracking

Je

@HEPSCI

Model

Here we build the network model.

This model is made of multiple parts. The first handles the

inputs and identifies common features. The rest are branches with
each determining an output parameter from those features.

inputs = Input(shape=(NINPUTS,), name='image_inputs')

commonmode L = DefineCommonModel(inputs)

Dmodel = DefinePhiModel(commonmodel)

phimodel = DefineDModel(commonmodel)

q_over_ptmodel = Define_q_over_pt_Model(commonmodel)

tanlmodel = Define_tanl_Model(commonmodel)

zmodel = DefineZModel(commonmodel)

commonoutput = DefineCommonOutput([Dmodel, phimodel, g_over_ptmodel, tanlmodel, zmodel])

Custom loss function requires additional inputs (inverse covariance matrix)
We must use the "add_loss" method to get around restrictions that prevent
us from just passing them in as extra labels. See:

https://stackoverflow.com/questions/62154660/keras-valueerror-dimensio

St-be-equal-hg

input_true = Input(shape=(5,), name='state_true')
input_incov = Input(shape=(5%5,), name='invcov')

all_inputs = [inputs, input_incov, input_true]

model = Model(inputs=all_inputs, outputs=commonoutput)

| CommonModel

4

q/pt Model tanl Model z Model

CommonOutput

Outputs

Total “inputs” includes hit
info., inverse covariance
matrix, and labels

/

Custom Loss function
- needs these same “inputs

final_model.add_loss(customLoss(input_true, commonoutput, input_incov))"”"—”’7
final_model.compile(loss=None, optimizer=opt, metrics=['mae', 'mse', 'accuracy'l])

19

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

7 101 2008
Je on Lab s EPSCI
- T —
Define custom loss function 2 _ 5 . . C—l . 5 .
def customLoss(y_true, y_pred, invcov): Xz - S’I, S’I,
batch_size = tf.shape(y_pred)[@0] # n.b. y_pred.shape[@] will not work for some reason in tfl

print('y_pred shape: ' + str(y_pred.shape)) # y_pred shape is (batch, 5)
print('y_true shape: ' + str(y_true.shape)) # y true shape is (batch, 5)

print('invcov shape: ' + str(invcov.shape)) # inconv shape is (batch, 25)

y_pred = K.reshape(y_pred, (batch_size, 5,1)) # y pred shape is now (batch, 5,1)
y_true = K.reshape(y_true, (batch_size, 5,1)) # y_state shape is now (batch, 5,1)
invcov = K.reshape(invcov, (batch_size, 5,5)) # invcov shape is now (batch, 5,5)

n.b. we must use tf.transpose here an not K.transpose since the latter does not allow perm argument
invcov = tf.transpose(invcov, perm=[0,2,1]) # invcov shape is now (batch, 5,5)

Difference between prediction and true state vectors
y diff = y pred - y_true

n.b. use "batch_dot" and not "dot"!

y_dot = K.batch_dot(invcov, y_diff) # y_dot shape is (batch,5,1) *most of the effort is in
y_dot = K.reshape(y_dot, (batch_size, 1, 5)) # y_dot shape is now (batch,1,5) getting the shapes right!
y_loss = K.batch_dot(y_dot, y_diff) # y_loss shape is (batch,1,1)

y_loss = K.reshape(y_loss, (batch_size,)) # y_loss shape is now (batch)

return y_loss 20

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

Je ferSon Lab g&hePscl
Testing the custom Loss function

e e Testloss function

Test loss function using a few known
y_pred_vals = [1.0, 2.0, 3.0, 4.0, 5.0] values

y_true_vals [15)y 231503515 24215 5+ 1]
inconv_vals = np.arange(®©.1, 2.6, 9.1).tolist()

«~——— 25 floating point values

e Create backend

Make of batch of 3, but just use the same values for each variables to hold the
y_pred = K.variable([y_pred_vals, y_pred_vals, y_pred_vals]) values just like the
y_true = K.variable([y_true_vals, y_true_vals, y_true_vals])

layers do in the full

inconv = K.variable([inconv_vals, inconv_vals, inconv_vals]) model
loss = K.eval(customLoss(y_true, y_pred, inconv))
print('loss shape: ' + str(loss.shape)) \ Create and EVALUATE ~ ® Pass in a small batch

handles batch

dimension correctly
y_pred shape: (3, 5)
y_true shape: (3, 5)
invcov shape: (3, 25)
loss shape: (3,)
[0.32499945 0.32499945 0.32499945] 21

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

y \ D .
Je on Lab \ CON
Summary do e\
' -

Custom Layers allow one to insert specific knowledge of mathematical forms into
the model, potentially relaxing how deep the architecture needs to be

Custom Loss functions allow specific knowledge of the uncertainties to be applied
while training regression models

Links to notebooks:

https://qithub.com/faustus123/Jupyter/blob/master/2020.08.15.CustomLayers/2020.08.15.Multiplication.ipynb

https://github.com/faustus123/Jupyter/blob/master/2020.08.15.CustomlLayers/2020.08.25.Mulitplication_customLayer.ipynb

22

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

https://github.com/faustus123/Jupyter/blob/master/2020.08.15.CustomLayers/2020.08.15.Multiplication.ipynb
https://github.com/faustus123/Jupyter/blob/master/2020.08.15.CustomLayers/2020.08.25.Mulitplication_customLayer.ipynb

Jefferson Lab

Backup Slides

23

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

Jefferson Lab @,%EPSCI
Alternative Way to Pass Extra Arguments to CustomLoss

##.
#*

Define custom loss function
def customLoss2(y_true, y_pred):

batch_size = tf.shape(y_pred)[@0] # n.b. y_pred.shape[@] will not work for some reason in tfl
print('y_pred shape: ' + str(y_pred.shape)) # y pred shape is (batch, 5)
print('y_true shape: ' + str(y_true.shape)) # y_true shape is (batch, 49)
print('y_pred type: ' + str(type(y_pred))) # y_pred shape is (batch, 5)
print('y_true type: ' + str(type(y_true))) # y_true shape is (batch, 49)

Note that y_pred only has the 5 state vector parameters while y_true contains
all of the labels (event, state vector, covariance matrix, inverse COV., ...)
We peel off the state vector and inverse covariance here which are the parts

we need.

y_state = y_true[:,1:6] # y_state shape is now (batch, 5)
invcov = y_truel:,21:46] # invcov shape is now (batch, 25)
y_pred = K.reshape(y_pred, (batch_size, 5,1)) # y_pred shape is now (batch, 5,1)
y_state = K.reshape(y_state, (batch_size, 5,1)) # y_state shape is now (batch, 5,1)
invcov = K.reshape(invcov, (batch_size, 5,5)) # invcov shape is now (batch, 5,5)

n.b. we must use tf.transpose here an not K.transpose since the latter does not allow perm argument
invcov = tf.transpose(invcov, perm=[0,2,1]) # invcov shape is now (batch, 5,5)

Difference between prediction and true state vectors
y_diff = y_pred - y_state

n.b. use "batch_dot" and not "dot"!

y_dot = K.batch_dot(invcov, y_diff) # y_dot shape is (batch,5,1)

y_dot = K.reshape(y_dot, (batch_size, 1, 5)) # y_dot shape is now (batch,1,5)

y_loss = K.batch_dot(y_dot, y_diff) # y_loss shape is (batch,1,1)

y_loss = K.reshape(y_loss, (batch_size,)) # y_loss shape is now (batch)

return y_loss 24

Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

Jefferson Lab @HEPSCI

25
Custom Layers and Loss Functions - David Lawrence - JLab - Joint GlueX-EIC-PANDA ML Workshop Sept. 21-25, 2020

