

Analysis of 2.7 GeV proton-beam measurements with the STS detector for the CBM experiment

Patrick Pfistner¹, for the CBM collaboration

Karlsruhe Institute of Technology KIT

Motivation

- COoling SYnchrotron (COSY) at Research Center Juelich provides well-defined experimental conditions with pencil-like fixed-energy proton beam
- First operation of a fully functional and noise-optimized STS module in beam
- Great tool for characterization of full CBM-STS electronic readout chain + sensor

Silicon Tracking System (STS)

- One of the core detectors of CBM, located inside the dipole magnet [1]
- Track reconstruction and momentum determination of charged particles
- Track mult. \leq 700 per central Au+Au collision in aperture $2.5^{\circ} < \theta < 25^{\circ}$
- Momentum resolution ∆p/p < 2%</p>
- Lifetime fluence up to $1 \times 10^{14} n_{eq}$ in innermost region

STS concept

- Eight tracking stations 0.3 m to 1 m downstream of the target
- 896 detector modules arranged in 106 ladders of 23 variations
- Readout electronics in periphery
- Complex module structure

COSY beamtime setup

- STS module box hosting a C-frame, the module, electronics and cooling infrastructure
- One STS module with 6x6 $\rm cm^2$ sensor, 45 cm aluminum microcables, two FEB-8 and 16 STS-XYTER v2.1 readout ASICs
- Scintillating fiber hodoscopes (64 channels in X and Y direction) in front and behind STS
- STS sensor: double-sided microstrip sensor with a 7.5° stereo angle on the p-side
- Full prototype CBM data-driven read-out chain

Beamtime parameters

- 2.7 GeV/c proton beam ($E_{kin} = 1.92 \ GeV$)
- Peak data rate: 4 x 10⁶ digis/s/16ASICs
- Performed beam intensity, beam position and threshold scans
- Reconstruction chain: digis (electronic signal) \rightarrow clusters \rightarrow hits

Performance of electronics

- STS-XYTER ASIC
 - STS + X, Y coordinates Time and Energy Resolution
 - Self-triggered front-end electronics
 - 128 readout channelsTime resolution < 5 ns
 - 5-bit flash ADC/channel with 14 fC dynamic range

Charge distribution 1-strip clusters

Hit map

STS sensor displaced in x and y

Summary

- COSY beamtime campaign was immensely helpful in commissioning of online reconstruction software (cluster finder, hit finder) and full electronic readout chain
- The targeted STS system noise of around 1000 e- was achieved
- Charge distributions show clear separation between noise and proton peak
- Successful beam spot reconstruction
- Results and experience gained highly valuable for upcoming mCBM campaigns

Outlook

- ADC calibration
- Determine detector efficiency with hodoscopes as reference
- mCBM heavy ion beam tests in 2020

