GSI

GSI Facility for FAIR Phase 0 and FAIR

M. Bai, GSI

on behalf of GSI Accelerator Operations Division

DPG Spring Meeting 2018, Bochum

core competences and uniqueness Charges and challenges of FAIR Phase 0 FAIR What is FAIR Phase 0? Status and challenges GSI intermediate Construction of FAIR Towards FAIR Upgrade of existing GSI

- Brief Introduction of GSI/FAIR accelerator facilities

Outline

research

program

Campus

development

accelerators

GSI/FAIR Accelerator Facilities

Injector

South

Injector North

HLI

Ion sources

beam from ESR

lectron

SIS-18

High energy experimental

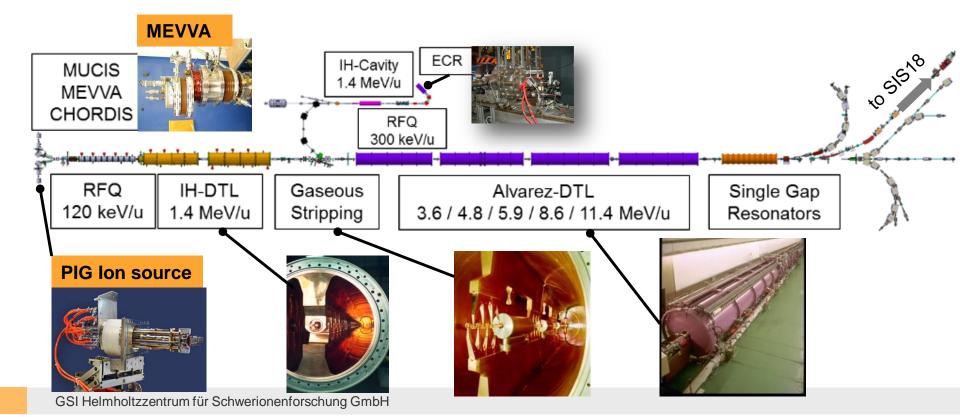
area

(216 m)

Unique hadron facility for multi users

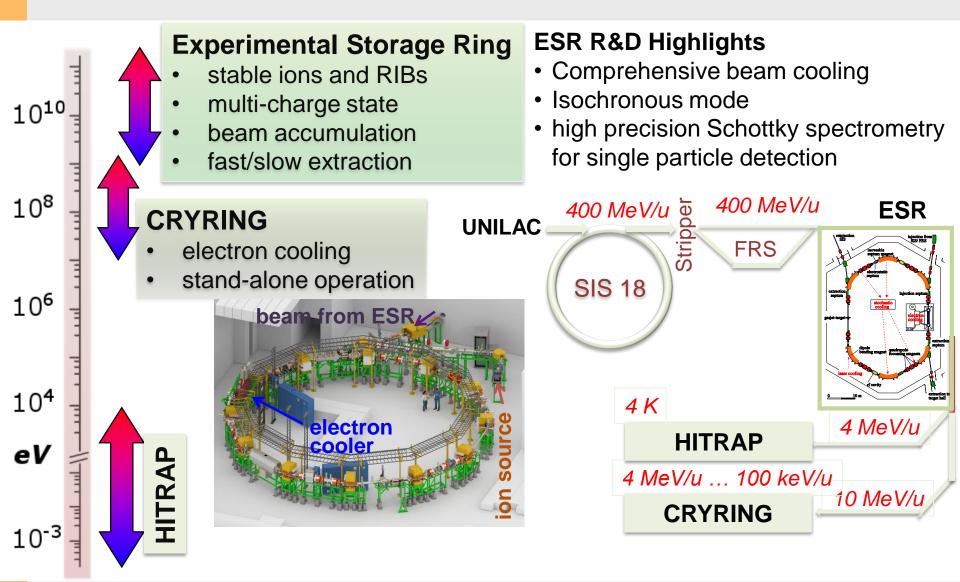
- both dedicated operation as well as parallel operation mode
- variety of operation modes, relative short transition in between
- Ultra high vacuum technique to reach highest intensity uranium beam! Comprehensive beam cooling to enable precision experiments at storage rings

UNILAC


Low energy experimental area

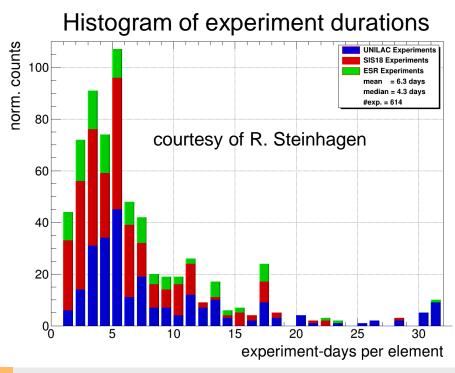
(120 m)

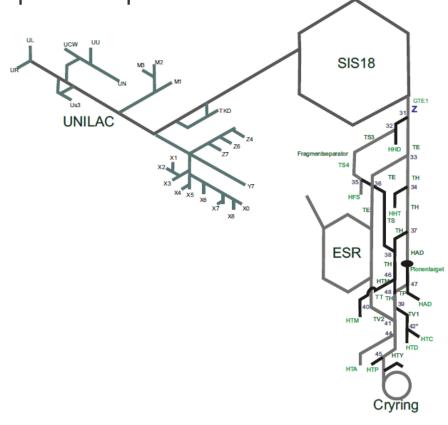
UNILAC Overview



- High current ion sources and ECRIS for high charge state
 - ions: 14N, 16O, 18O, 50Ti, 40Ar, 48Ca, 107Ag, 124Xe, 208Pb, 238U
 - p+ and 12C from molecular beams (isobutane)
- High intensity and bright uranium beams!

Storage, deceleration and trapping of ion beams



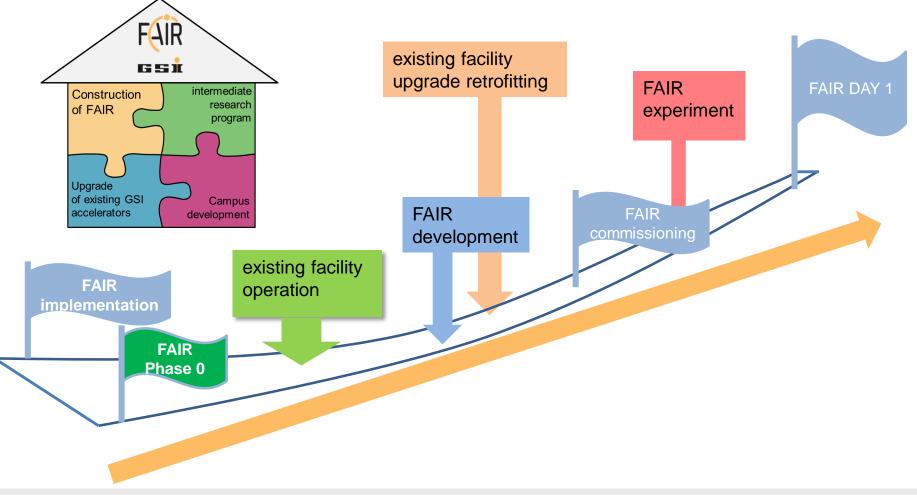


GSI Facilities uniqueness

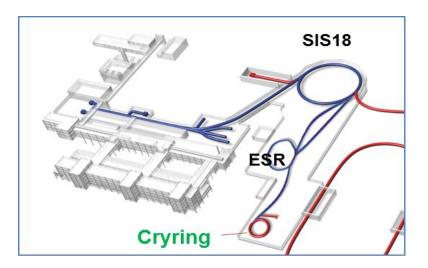
GSİ


- Versatileness and flexibilities
 - unique hadron facility for multi users
 - both dedicated operation as well as parallel operation mode
 - variety of operation modes
 - relative short transition in between

From GSI to FAIR

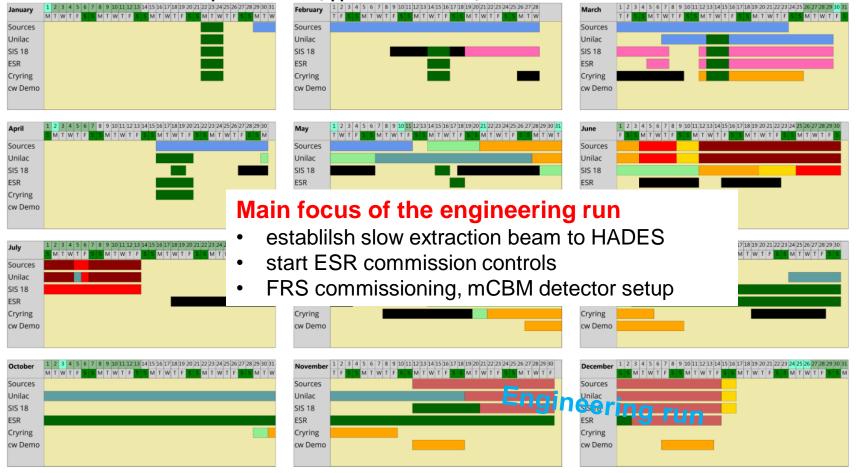


Roadmap

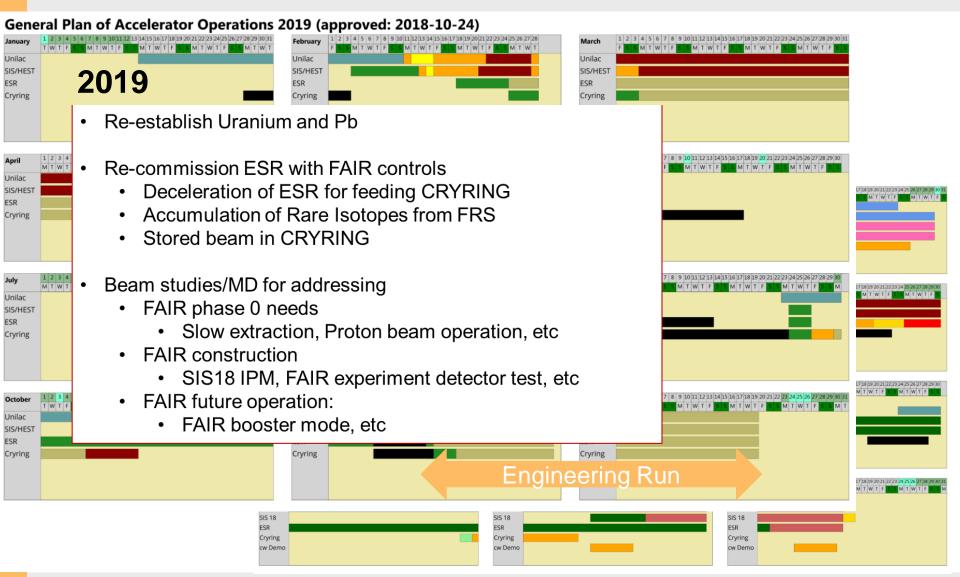

From FAIR phase 0 to FAIR

FAIR Phase-0 intermediate research program

- Objectives:
 - Forefront research by employing and testing new FAIR detectors
 - Exploiting upgraded GSI accelerator facilities incl. the newly installed CRYRING
 - Education of young scientists
 - Maintain and extend skills and expertise
 - Serve national and international user community


- requires careful techn. preparation:
 - full re-commissioning of the UNILAC/SIS18/ESR complex incl. new controls
 - gradual implementation of the intensity increase to avoid any damage and activation

Beamtime for FAIR Phase 0



2018

General Plan of Accelerator Operations 2018 (approved: 2018-09-16)

Beamtime for FAIR Phase 0

GST

Beamtime for FAIR Phase 0

General Plan of Accelerator Operations 2020 (approved: 2019-09-13)

ESR

April

ESR

July Unila

FCD Cryring

SIS/HEST

cw-Linac

Unila SIS/HEST ESR Cryring

cw-Linac

- Despite of the COVID-19, 2/3 of the experiments including the challenging ones such as bound state beta decay were fulfilled
- Heavy ion beams established throughout the chain
- Re-establish ESR for its storage ring operation mode including beam stacking
- CRYRING is commissoned with beam from ESR
- High intensity heavy ion campaign towards FAIR

Cryring

SIS 18

Cryring

cw Demo

ESR

SIS 18

cw Demo

FSR Cryring

Current nominal performance

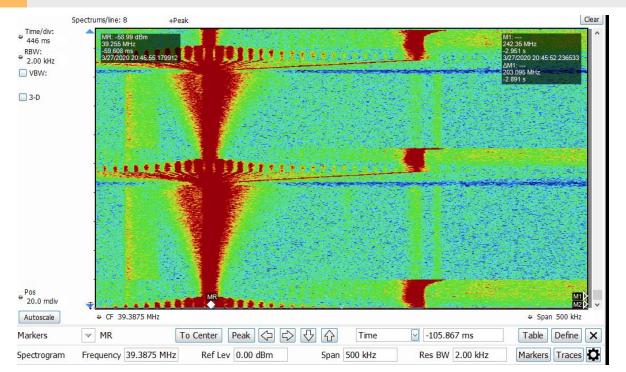
https://www.gsi.de/work/beschleunigerbetrieb/betrieb.htm

Nominal Intensities at Experiment for UNILAC and SIS18 Operation 2021-2022

* 50Hz Operation for the UNILAC Experiments will be restricted by the MAX Energy of 8.4 MeV/u.

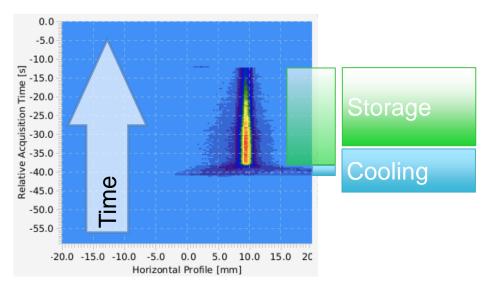
** Beam energy upto 8.6MeV/u: 1) lower charge state especially for heavy ions 2) limitation on highest energy for heav ions 3) could be limitation for beam quality, which can limit the development of high intensity development towards FAIR
*** nominal intensity for slow extracted SIS18 depends on the beam energy. Currently, the SIS18 electrostatic septum efficiency scales down from rigidity 12Tm.

**** bold green ions have been used in the current ongoing operations since 2019

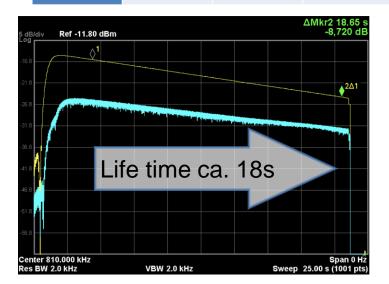

			UNILAC			SIS18					
Projectile	Charge	Isotope	Average particle current	MAX Rep rate*	Ion Source	Nominal Intensity (per Cycle)	MAX Rep Rate (fast extraction)	Maximum energy [GeV/u]	Ion Source	Comments	
U	73/68	238				2.00E+09	1Hz	1/0.9	VARIS	1)The standard operation with pulsed gas stripper is not supported in 2021-2022 2) The HSI RFQ currently reached 83% of the nominal voltage required for U4+ beam	
Bi	68/64	209				2.00E+09	1Hz	1.1/1.0	VARIS		
Pb	67	208				1.00E+09	0,5Hz	1.075	VARIS	The enriched 206 Material is in house (was bought for the EXP Litvinov). The enriched materila for 208 Isotope must be procured extra.	
Au	65	197				1.50E+09	1Hz	1.11	VARIS		
Au	26		0.1 pµA	50Hz	PIG				PIG		
Xe	48	124				2.00E+09	1Hz	1.4	MUCIS	The MUCIS Projectile production ist 3Hz	
Ag	45	107				1.00E+09	1Hz	1.57	VARIS		
-	22	50				2.00E+08	1Hz	1.67	PIG		
Ti	12		0.8 pµA	50Hz	PIG						
Ca	20	48				5.00E+08	1Hz	1.55	EZR		
Ca	10		0.8 рµА	50Hz	EZR						
Ar	18	40				3.00E+10	1Hz	1.72	MUCIS		
Ni	26	58				5.00E+09			VARIS	offered in 2014	
Ne	10	22				5.00E+09	1Hz	1.72	MUCIS	offered in 2011	
0	8	18				5.00E+10	1Hz	1.69	VARIS		
U	3	16/18	1 pµA	50Hz	EZR						
N	7	14				7.00E+10	0,35Hz	1.99	MUCIS	Approved by Radiation Protection	
Li	1,3	7				2e10/1e9			PIG	offered in 2010	
с	6	12				4.00E+09	1Hz	1.99	MUCIS		
L L	2		2.4 pµA	50Hz	EZR					possible basic attenuation	
Р	3	H3 molecule				1.00E+09	0.1Hz		MUCIS	parallel option limited to A/Q upto 6	
р	1	CH3 molecule				8.00E+10	0.1Hz	4.67	MUCIS	The operation with protons has the following restrictions from teh UNILAC site: - Operaiton with Gasjet-Stripper, not pulsed - CH3 from High current Ion Source - exclusive operation, no other beams in Poststripper	

- Despite of the COVID-19, 2/3 of the experiments including the challenging ones such as bound state beta decay were fulfilled
- Heavy ion beams established throughout the chain
 - 1.3e9 uranium beam was established at the end of 2nd Engineering run
 - Stable Pb and Bi beam throughout beam time. 2e9 Bi beam was established at SIS18 flattop with and without the last tank of UNILAC Alvarez (A4)
- Re-establish ESR for its storage ring operation mode including beam stacking
- Highly charged Pb beam from ESR were injected, stored, cooled and decelerated in the CRYRING. Lifetime at different energy was measured. Pb82+ lives between 10-20 seconds
- Proton beam for FAIR phase 0
 - Proton <u>beam@4.5GeV</u> was established and slow extracted to the target
 - 5e10 beam intensity at flattop was achieved. Higher intensity for 2021 beam time is foreseen if ample time is available for machine optimization
- High intensity heavy ion campaign towards FAIR
 - 4e10 Bi28+ was established at SIS18 injection, and upto 3e10 were at flattop

Highlights: ESR


- Beam stacking is now operational
- Pb beam decelerated, and extracted to CRYRING

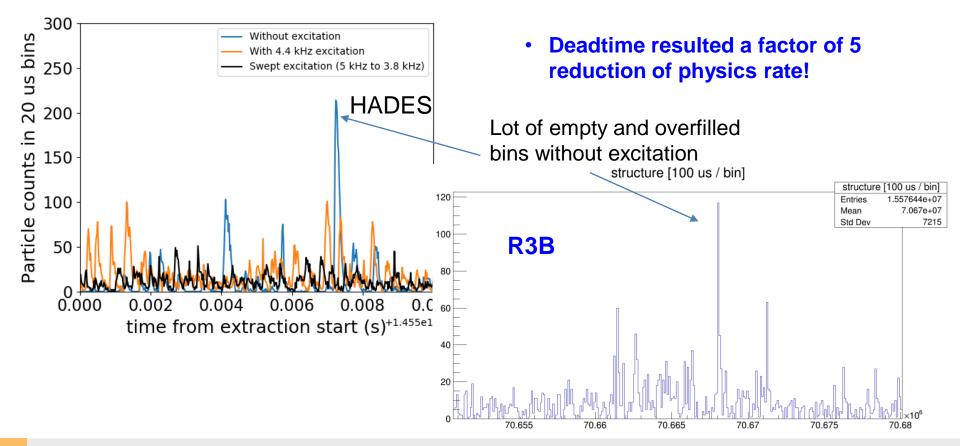
Highlights: CRYRING



- Captured, Stored and Cooled Pb⁷⁸⁺ and Pb⁸²⁺ (bare)
 - 6 x 10⁶ particles delivered from ESR at 10 MeV/nucleon
 - 3 x 10⁵ particles available for experiments in CRYRING@ESR after cooling
 - Ion beam deceleration to 4 MeV/nucleon has been successfully tested
- Lifetimes measured for different energies and ions
 - Pb⁸²⁺ lives between 10 and 20 seconds

Horizontal beam profile over time

Electron Current Lifetime Measured @10 MeV/u Lifetime / s beamcal / s С 12 mA 24(1) Pb78+ 33 22 mA 8(1) 28 Pb78+ 12 mA 23 Pb82+ 12 mA 18 U92 +@4 MeV/u 5(1) 7.5 Pb78+ 0 mA

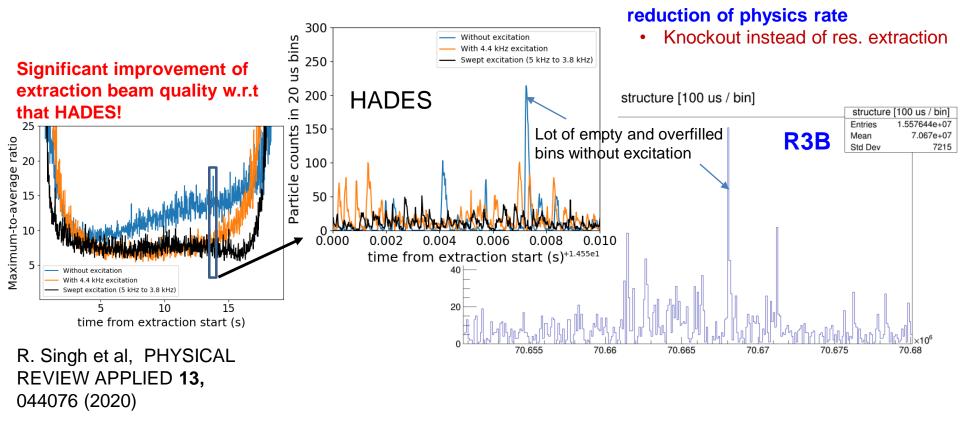


Lifetime, i.e. time for a signal drop of 8 dB

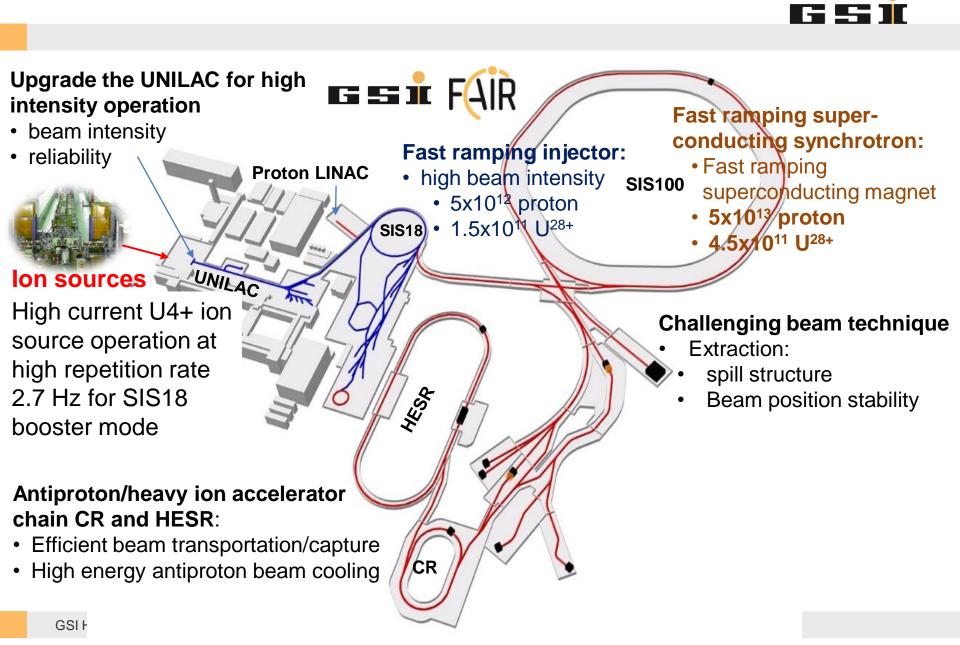
Highlights: SIS18 slow extraction

sporadic spill structure

- Not yet comprehensive measurements to ping down the smoking gun(s)
- Cause deadtime on the detectors


Highlights: SIS18 slow extraction

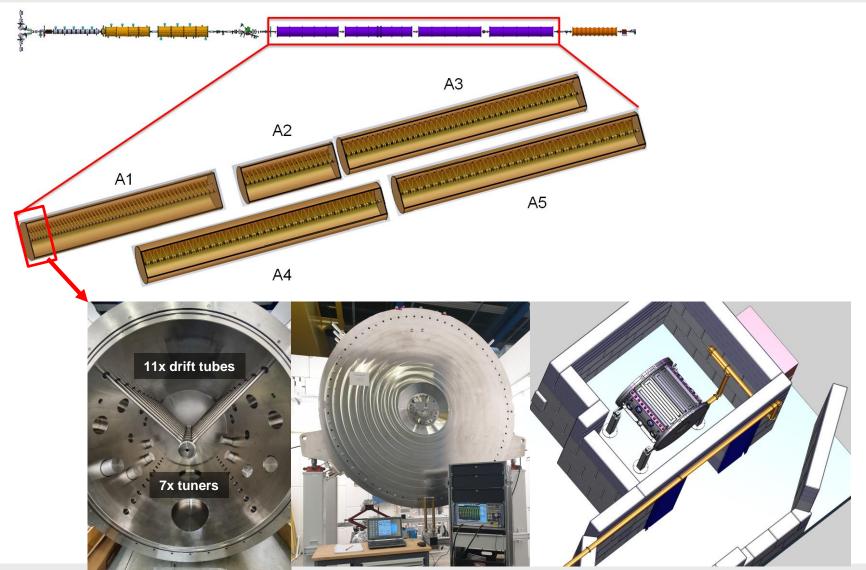
sporadic spill structure


Not yet comprehensive measurements to ping down the smoking gun(s)

Deadtime resulted a factor of 5

Cause deadtime on the detectors

Challenges in Accelerator Science & Technology



Measures for meeting FAIR requirements

	Upgrade measures	Status	Timeline
lon source	2.7 Hz high current uranium source	ongoing	2018 to 2021
	dedicated uranium terminal	planned	2020 to 2023
UNILAC	HSI RFQ upgrade Redesign of RFQ beam dynamics and matching to subsequent pre-stripper, LEBT, RFQ dynamics, MEBT	proposed	 Corresponding strategy will be formed after carefully evaluating the systematic high intensity heavy ion beam performance during the upcoming operations Implementation of the strategy depends on the budget availability
	HSI MEBT upgrade	proposed	Similar as above
SIS18	Cryo pumps to mitigate the dynamic vacuum instability	proposed	Similar as above
	Advanced techniques to address beam intensity limitations	Under investigation	Similar as above
	Systematic evaluation of beam parameters including 6D emittance	Proposed	Q4 2019 to FAIR commissioning
CRYRING	Upgrade of RF and vacuum	Proposed	Depending on budget and resource availability

Path towards FAIR

Targeted R&D

- -- UNILAC upgrade measures
 high intensity RFQ, heavy ion stripping, end2end optimization, etc
 -- SIS18:
 - 1) intensity limitation mechanism: dynamic vacuum,
 - other beam instability mechanisms, etc
 - 2) mitigation: feedbacks. etc
- -- Storage rings: precision beam controls

Systematic evaluation of the UNILAC and SIS18 performance for meeting long term needs

- -- UNILAC SIS18 high intensity/high brilliance MDs
- -- full commissioning of SIS18 upgrade measures

present

-- continue 2.7Hz ion source development and UNILAC new post stripper (Alvarez) implementation

Implementation of all identified mitigation measures

-- mitigating all UNILAC and SIS18 limitations

Thank You!

J. Blaurock, "The synergies of operationsat present accelerators and future FAIR", GSI beam time retreat 2018

in

GSI Helmholtzzentrum für Schwerionenforschung GmbH

FAIR Project Status - Visit to CERN 23.01.2018