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Feedbacks – in a nutshell
Ø In presence of a coherent instability leading to a complex frequency shift 

Δ"#$%
& ' ∝ )*+,-./0 = )2ℑ +,-./ 0)*ℜ +,-./ 0

… it is natural to try to damp the exponentially growing term (ℑ Δ"#$% < 0) 
with a counteracting damping exponential:

& ' ∝ )2789:;0

Ø In other words the growth rate −ℑ Δ"#$% > 0 gets cancelled out by the 
damper gain −>?@AB < 0.

Ø To do so, one “only” need to measure the beam position & ' and kick 
proportionally to it with a phase of  CD .

⟹ ”ideal” (bunch-by-bunch) damper, which acts only on the bunch 
centroid.
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Landau damping – in a nutshell
Alex W. Chao: “[…] there are a large number of collective
instability mechanisms acting on a high intensity beam in an
accelerator […]. Yet the beam as a whole seems basically stable,
as evidenced by the existence of a wide variety of working
accelerators[…]. One of the reasons for this fortunate outcome is
Landau damping, which provides a natural stabilizing
mechanism against collective instabilities if particles in the beam
have a small spread in their natural […] frequencies.”

Mathematically, the coherent frequency of the motion Ωmust self-
consistently obey the dispersion relation involving the frequency spread 
" # :

1 = −Δ#()* +,#
" #
Ω − # = −Δ#()* -. / +
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,# " #

Ω − # − 34" Ω

with Δ#()* the complex frequency shift of the instability in the absence of 
frequency spread.
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Landau damping – transverse
Ø Dispersion relation:

1 = −Δ%&'( ). + ,
-.

/.
0% 1 %

Ω − % − 341 Ω
Ø What does this mean?

§ Even with Ω real, there are both a real and imaginary part between 
the square brackets.

§ This means the equation can hold even when Δ%&'(is complex and 
the final coherent frequency Ω is real (i.e. stable).

§ At a given real freq. shift ℜ(Δ%&'(), everything is as if the instability 
gets a damping term equal to the stability diagram imaginary part 
computed at ℜ(Δ%&'() Stability diagrams

⇒ modes with a freq. 
shift inside the diagram 
are stable

Stab. diagram theory from 
A. Ruggiero and V. Vaccaro, 
CERN-ISR-TH/68-33

damping

To some extent it 
looks like the action 
of a feedback…
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Feedbacks – in reality (LHC)

From D. Valuch, 
LBOC 24/05/016

Bunches “talk to each 
other” through the 
feedback

Damper closer to ideal
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Feedbacks – in reality (LHC)

From D. Valuch, 
LBOC 24/05/016

Non ideal feedback
has higher gain for
modes at lower 
frequency

…while in ideal 
feedback the gain is the 
same for all modes.
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Feedbacks – in macroparticle simulation tools

From K. Li & J. Komppula, 
HSC meeting, 18/03/2019
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Feedbacks can be used in various ways…

Ø Instead of being resistive, they can also be used as reactive feedback, 
i.e. fighting the real part of the frequency shift
→ used to stabilise TMCI, with limited success (not more than 5-10 % 
increase of LEP TMCI threshold - several models developed [Danilov-
Perevedentsev 1993, Sabbi 1996, Brandt et al 1995].

Ø More generally, one can play with the phase and even use the damper 
as an instability exciter (was done as a machine study in the LHC):

From S. Antipov, HSC 
meeting, 04/11/2018



9N. MOUNET – FEEDBACK & LANDAU DAMPING – MASRS 23/06/2020

Feedbacks can also create instabilities…

From E. Métral et al, 
IPAC’18

No damper
⟶ no instability 
at zero chroma 
and low intensity.

The damper 
creates an 
instability.
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… but also unexpectedly damp others

Ø Case of FCC (it is very similar in the LHC):

From S. Arsenyev and
N. Klinkenberg, HSC 
meeting, 24/09/2018

The damper creates 
an instability.

… while at high chroma the damper 
seems to damp intrabunch modes
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Landau damping – a more complex reality

Ø Sometimes tunespread also has a detrimental effect:

From Y. Chin, 
CERN/SPS/85-09 (1985).
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Landau damping – a more complex reality

Stability diagrams, on one side… … but on the other hand 
modes get also modified 
by tunespread.
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Landau damping – a more complex reality

Ø Other effects (e.g. noise) can modify the stability diagram:

⟹ Diffusion effects seem to be able to drill “holes” in the stability 
diagram.

�Qcoh = �1.0⇥ 10
�4

+ i · 1.5⇥ 10
�5

September 26, 2019 Sondre Vik Furuseth Noise and possible loss of Landau damping 26

From S. Furuseth
& X. Buffat, MCBI 
Workshop, 
26/09/2019
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Feedbacks and Landau damping
Ø Simplistic view: they both introduce a damping rate.

Ø Reality is much more complex:

q complex feedback system,

q non-ideal feedbacks,

q complex modification of the stability diagram.

Ø … and some effects are really contradicting the simple picture:

q destabilizing effect of damper close to zero chromaticity,

q destabilizing effect of tunespread on TMCI,

q modification of coherent modes due to the source of tunespread.

⟹ to get all these effects one needs a more realistic modelling,

⟹macroparticle simulations or Vlasov solvers.
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Vlasov equation [A. A. Vlasov, J. Phys. USSR 9, 25 (1945)]

Ø Vlasov equation is based on Liouville theorem (or equivalently, on the 
collisionless Boltzmann transport equation), which expresses that the 
local phase space density does not change when one follows the flow 
(i.e. the trajectory) of particles.

Ø In other words: local phase space area is conserved in time: !"
!# = 0

Red particles at time t become the orange ones at time t + dt, 
and the black square becomes the grey parallelogram which 
contains the same number of particles.
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From Vlasov equation to Sacherer equation

Ø Vlasov equation is a priori a partial differential equation of 7 variables:
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Ø In the context of transverse beam instabilities from impedance, after a 
number of assumptions and decompositions, and looking for a single 
coherent mode, it can be recast into the simpler Sacherer equation [F. J. 
Sacherer, CERN/SI-BR/72-5 (1972)]:

Ω − 1+232 − 435 67 8 =
9:32;
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N	:	number	of	particles	of	charge	e,
P: slippage factor,
6: machine radius, 
1+2: unperturbed transverse tune,
ω2: angular revolution frequency,
35 = 3215 : synchrotron frequency,
j: beam velocity,
?: relativistic mass factor
@2: particle rest mass
1+
O : chromaticity,

B2 8 : longitudinal distribution,

M7 : Bessel function

These are the unknown 
(frequency and radial 
distribution of the mode)

This is the 
impedance
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Extension of Sacherer equation with feedback

Ø A non-ideal (but still linear) feedback can be modelled as in impedance
⟶ already in the formalism

Ø An ideal feedback is a delta function impedance (or constant wake)
⟶ needs an extension of Sacherer equation to include it [NM, CERN 
Yellow Reports: Conf. Proc., 1 (2018) p. 77 ]:

Damper part (" is proportional 
to damping gain)
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Equation can be recast into a standard 
eigenvalue problem.
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Sacherer equation with feedback

Including the feedback in the dynamical system (rather than a posteriori as a simple 
damping rate) unveiled a number of effects:

§ destabilising effect of the damper close to zero chromaticity (see before),

§ damping of high order headtail modes at high Q’ with bunch-by-bunch damper:

The equation is implemented in several Vlasov solvers (NHTVS [A. Burov, PR ST-AB, 
17 (2014), DELPHI [NM, CERN Yellow Reports: Conf. Proc., 1 (2018) p. 77], GALACTIC
[E. Métral et al, IPAC’18 (2018) pp. 3076–3079 ].

A. Burov, NM et al, 
ABA model, talk at 
LBOC, 14/08/2012

⟹ This supported the idea of 
running at high Q’ with high 
damper gain in the LHC.
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Extension of Sacherer equation with tunespread

Ø It is also possible to extend Sacherer equation including linear 
amplitude detuning (and going beyond the stability diagram theory).

Ø Defining the dispersion integral as 

! Ω − $%& = (
)

*+ ,-. ⋅ -. ⋅
,0)
,-.

Ω − %) 1.) + 3..-. − $%&

we can get:
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Equation obtained first by 
Y. Chin, CERN/SPS/85-09 
(1985).

Transverse 
distribution

Amplitude 
detuning
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The determinant equation

Ø After some expansion on orthogonal polynomials, one gets an 
equation of the form

0 = #
$%&'(

)(
#
*%&+

)( ,$$%,**%
- Ω − 0123

+ℳ$*,$%*% 7$%*
%

where each coefficient of the matrix ℳ can be computed analytically.

Ø Non trivial solutions are found if and only if Ω is the root of 

det ,$$%,**%
- Ω − 0123

+ℳ$*,$%*% = 0

Ø Issue: there is a priori no general strategy to find all the roots.

⟹ this is a very difficult equation to solve.
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Is there a stability diagram still in the general case?

Without trying to solve the full problem, we try to map the complex plane of 
tuneshifts, thanks a broad scan of the phases and gains of a damper (inspired 
by the LHC study by S. Antipov et al, CERN-ACC-NOTE-2019-0034).

Case Q’=0

Making a fine mesh of phases and 
gains, we can cover a large area in 
the complex plane:
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Can we recover the stability diagram theory?

Ø Strategy: for each gain/phase of the damper, we compute the determinant
along the real tune shifts→when it touches the stability diagram, the 
minimum of this 1D curve should go to zero.

Case Q’=0
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Generalized stability diagrams

Case Q’=0

The color represents the minimum of the previous 1D curves:

“Usual” stability diagram
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Effect of chromaticity

Case Q’=5

The color represents again the minimum of the 1D curves:

Usual stability diagrams 
around 0, -Qs and -2Qs
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Effect of chromaticity

Case Q’=15

The color represents again the minimum of the 1D curves:

Usual stability diagrams 
around 0, -Qs and -2Qs

→ Generalized stability 
diagrams, different from 
the “usual” ones and 
chromaticity dependent.
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Feedbacks and Landau damping

Ø Both can be understood heuristically as providing a damping rate for 
certain modes.

Ø However, such a simple picture does not withhold a number of 
observations, e.g. destabilizing effects.

Ø In a Vlasov treatment, a more realistic picture can be obtained by:

q extending Sacherer equation with an ideal, bunch-by-bunch damper,

⟹ unveils the ability of such a damper to stabilize high order headtail
modes and to destabilize the beam in some conditions,

q generalizing the same equation with linear amplitude detuning,

⟹ could potentially extend the stability diagram theory, but requires to 
overcome the difficulties to solve the obtained determinant equation.


