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“ Feedbacks — in a nutshell

N4

» In presence of a coherent instability leading to a complex frequency shift
Awcon

(x)(t) ox efB@cont = o=S(Bwcon)t g JR(Bweon)t

... itis natural to try to damp the exponentially growing term (J(Aw,op) < 0)
with a counteracting damping exponential:

(X)(t) X e “Y9dampt

> In other words the growth rate —3(Aw,,,) > 0 gets cancelled out by the
damper gain — g4, < 0.

» To do so, one “only” need to measure the beam position (x)(t) and kick
proportionally to it with a phase of g :

= "ideal” (bunch-by-bunch) damper, which acts only on the bunch
centroid.
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@ Landau damping - in a nutshell

Alex W. Chao: “[...] there are a large number of collective
instability mechanisms acting on a high intensity beam in an

PHYSICS OF COLLECTIVE

accelerator [...]. Yet the beam as a whole seems basically stable, et o

ACCELERATORS

as evidenced by the existence of a wide variety of working
accelerators|...]. One of the reasons for this fortunate outcome is
Landau damping, which provides a natural stabilizing
mechanism against collective instabilities if particles in the beam
have a small spread in their natural [...] frequencies.”

Mathematically, the coherent frequency of the motion () must self-
consistently obey the dispersion relation involving the frequency spread

p(w):
p(w)

400
plw)
1=—-Aw.p j da)Q = —Awop [P.V J_oo da)Q — —]T[p(Q.)]

with Aw ., the complex frequency shift of the instability in the absence of
frequency spread.
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@) Landau damping - transverse

» Dispersion relation:

+0o w
1 =—Awcon [P-V J dwg( ) — jmp(Q)

— W
> What does this mean? \ ‘

= Even with () real, there are both a real and imaginary part between
the square brackets.

» This means the equation can hold even when Aw_,is complex and
the final coherent frequency () is real (i.e. stable).

= Atagiven real freq. shift R(Aw,,p), everything is as if the instability
gets a damping term equal to the stability diagram imaginary part

CO m p uted at m (Aa) h) ZIOOT— Stab. diagram gaussian, neg. polarity, loct = —100.0 A
co ~

1.50

Stability diagrams
= modes with a freq.
shift inside the diagram

1.25

To some extent it “ are stable
looks like the action | Stab. diagram theory from
of a feedback... 02s A. Ruggiero and V. Vaccaro,
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&) Feedbacks - in reality (LHC)
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&) Feedbacks - in reality (LHC)

N4
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o Frequency response comparison of “standard bandwidth” and “enhanced
bandwidth” operation

Frequency response, standard and enhanced bandwidth
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CE/RW Feedbacks — in macroparticle simulation tools
Example: the PyHEADTAIL ADT model

* Detailed model can be build with a list of signal processors

ICGS

Signal Data

o\ PYHEADTAIL . .. L

N generator loader Example visualization: 3-batch injection

4°C_): ¢ ¢ ¢ * Direct data from signal processors in debug mode

processors x = [

# NoiseGenerat 1L || — ADC (pickup)
== HarmonicADC(1* ‘ ‘ ‘ ) —  Turn delay
n_ 5 o — Phase correction
== TurnFIRFilter( g v
s 5 psampler
=3 FIRFilter(FIR_ WV | Register Resampler = 1t —  Gain correction
Upsampler(3, [ O < = ADC DAC 5 — DAC
FIRFilter(FIR W\ ombiner Quantizer Vool o o
= DAC(ADC bits, - $ Vector sum - Power amplifier
== Lowpass (fc, f O | Hilbert phase Convolution N , , . .
BackTo0 1 © shifter Low pass filter 0 2 4 6 8
] ackToOrigina S Turn delay High pass filter Time [us]
- Turn FIR filter FIR filter  Delay
© — =
c | Multiplication Addition ]
(@) Noise gate Noise generator FrOm I(. LI &.I. KomPPUIa,
0N Charge weighter Offset .
HSC meeting, 18/03/2019
J. Komppula
18.03.2019 HSC Meeting - Kevin Li 18
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&) Feedbacks can be used in various ways...

» Instead of being resistive, they can also be used as reactive feedback,
i.e. fighting the real part of the frequency shift
— used to stabilise TMCI, with limited success (not more than 5-10 %
increase of LEP TMClI threshold - several models developed [Danilov-
Perevedentsev 1993, Sabbi 1996, Brandt et al 1995].

» More generally, one can play with the phase and even use the damper
as an instability exciter (was done as a machine study in the LHC):

ADT fully qualified to act as a controlled source of impedance
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From S. Antipov, HSC
meeting, 04/11/2018

Can measure Landau damping from nonlinearities at injection

* Next step — compare with the measurements (E. McLean et al.)



‘i@ Feedbacks can also create instabilities...

N4

IPAC2018, Vancouver, BC, Canada JACoW Publishing

9th International Particle Accelerator Conference
doi:10.18429/JACoW-IPAC2018-THPAF048

ISBN: 978-3-95450-184-7

DESTABILISING EFFECT OF THE LHC TRANSVERSE DAMPER

E. Métral’, D. Amorim, S. Antipov, N. Biancacci, X. Buffat and K. Li, Geneva, Switzerland

The damper
creates an
instability.
No damper
— no instability
at zero chroma |
and low intensity. B From E. Métralet al,
IPAC'18

Figure 3: Solutions of the diagonalisation of the 2x2 ma-
trix of Eq. (7): without (blue) and with (red) the damper.
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&) ... butalso unexpectedly damp others

NS

» Case of FCC (it is very similar in the LHC):

.. 10p energy, single bunch

From S. Arsenyevand
N. Klinkenberg, H5C
eeting, 24/09/2018

| single bunch, 200 turns transv. feedback
... While at high chroma the damper

seems to damp intrabunch modes

. 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
The damper creates Qp

an instability.

From a chromaticity
of Qp = 2.5 onwards a
damping rate of 200
turns stabilizes more
than a damping rate
of 50 turns.



&) Landau damping — a more complex reality

N/ S
» Sometimes tunespread also has a detrimental effect:
X 10° 10
< 400
4 300 -~
P g
= &g
4 20 7
-4 100
0 0
0 10 20
s X 107
From Y. Chin,
CERN/SPS/85-09(1985).
Fig. S The threshold intensity and the maximum growth rate as a

function of the tune spread.
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CERN

OV Landau damping —a more complex reality

PHYSICAL REVIEW ACCELERATORS AND BEAMS 21, 084402 (2018)

Vlasov description of the effects of nonlinear chromaticity
on transverse coherent beam instabilities

M. Schenk,'"*" X. Buffat,' K. Li,! and A. Maillard®

Stability diagrams, on one side... ... but on the other hand
modes get also modified

PYHEADTAIL by tunespread.
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&) Landau damping — a more complex reality

N4

» Other effects (e.g. noise) can modify the stability diagram:

. x1075 x10-5 10
10
1071 5T '/\ 3r t// 8
102 i - 4+ \2 u A"
£ S| /\/ 6 =
o § g7 VR € | From S. Furuseth
Il > 5L | | 4
ey E° AN & X. Buffat MCBI
1 < 1r- 2
~10 / N Workshop,
-10° o—— . . ——
05 2 4 3 8 10 0 -5.0 -25 0.0 2.5 5.0 7.5 0 26/09/201 9
Jx Re{AQcn} x107*

= Diffusion effects seem to be able to drill “holes” in the stability
diagram.
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@ Feedbacks and Landau damping

» Simplistic view: they both introduce a damping rate.
» Reality is much more complex:
L complex feedback system,
1 non-ideal feedbacks,
L complex modification of the stability diagram.
» ... and some effects are really contradicting the simple picture:
L destabilizing effect of damper close to zero chromaticity,
[ destabilizing effect of tunespread on TMCI,
 modification of coherent modes due to the source of tunespread.
= to get all these effects one needs a more realistic modelling,

= macroparticle simulations or Vlasov solvers.
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i@ Vlasov equation [A. A. Vlasov, . Phys. USSR 9, 25 (1945)]

» Vlasov equation is based on Liouville theorem (or equivalently, on the
collisionless Boltzmann transport equation), which expresses that the

local phase space density does not change when one follows the flow
(i.e. the trajectory) of particles.

» In other words: local phase space area is conserved in time: ay =
dt

o °@ . "!
’ o o “f~‘. °
* M o.' O .'..‘
- — EXA S
Py ] ° ,*..f o ..'-. °
° ° o, % Q.o P ‘i." °
L] o ° 0l o«
. oo :. 0.-' ..“'- ) .\p..
‘o ﬂ Ld .o“*. % s “ . "Po
Y Too 34 o
4 ...o. - o
3 .' ..Q’;:o'. ..o
oq ‘ °

Red particles at time tbecome the orange ones at time ¢ + df,

and the black square becomes the grey parallelogram which
contains the same number of particles.
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&) From Vlasov equation to Sacherer equation

N4

» Vlasov equation is a priori a partial differential equation of 7 variables:

dp _op Opdx opdp, Owdy Opdpy dpdz 0y dp, _
dt 0t odxdt 0dp,dt dydt 0dp, dt 0zdt Op, dt

» Inthe context of transverse beam instabilities from impedance, after a
number of assumptions and decompositions, and looking for a single
coherent mode, it can be recast into the simpler Sacherer equation [F. J.
Sacherer, CERN/SI-BR/72-5 (1972)]:

+ 00

ijoez 1y N: number of particles of charge ¢,
(Q — Qyowo — le)Rl(r) = Ay mgvQ go(r) Z ] n: slippage factor,
4 0%%¢y0 I'=—o0 R: machine radius,
400 - 0!\ 7] Qy0: unperturbed transverse tune,
X Z FAdFR ()] (Qyo + k — —y> — wo: angular revolution frequency,
I nJR ws = wyQs: synchrotron frequency,

k=-
, v: beam velocity,
Qy

r : relativistic mass factor
Zy, ((Qyo + k)wo)]l (Qyo k= 7) R ]r/noz particle rest mass
) ) Q: chromaticity,
These are the unknown This is the Jo(r): longitudinal distribution,
(frequency and radial impedance J;: Bessel function
distribution of the mode)
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CE{W Extension of Sacherer equation with feedback

» A non-ideal (but still linear) feedback can be modelled as in impedance
— already in the formalism

» Anideal feedback is a delta function impedance (or constant wake)
— needs an extension of Sacherer equation to include it [NM, CERN
Yellow Reports: Conf. Proc, 1 (2018) p. 771:

_ jNwge? 1
(Q = Qyowo — lwg)R (1) = Irmov Qe 9o (1) Z J

to L
S [remno 02
k=—o 0
+00
+ ) 2y ((Qyo + K)o ) Ju [(Qyo th— —) ]Jl 0tk - —)%

k=—o

}

Damper part (u is proportional
Equation can be recast into a standard to damping gain)

eigenvalue problem.
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&) Sacherer equation with feedback

N4

Including the feedback in the dynamical system (rather than a posteriori as a simple
damping rate) unveiled a number of effects:

» destabilising effect of the damper close to zero chromaticity (see before),
» damping of high order headtail modes at high Q" with bunch-by-bunch damper:

= Threshold of instability in terms of bunch intensity for a given octupole current (450A):

nnnnnnn

A. Burov, NM et al,
ABA model, talk at
LBOC, 14/08/2012

= This supported the idea of
running at high Q" with high
damper gain in the LHC,

Status impedance-damper model - LBOC - 14/08/2012 2

The equation is implemented in several Vlasov solvers (NHTVS [A. Burov, PR ST-AB,
17 (2014), DELPHI [NM, CERN Yellow Reports: Conf. Proc,, 1 (2018) p. 77], GALACTIC
[E. Métral et al, IPAC'18 (2018) pp. 3076-3079].
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@) Extension of Sacherer equation with tunespread

N4

» Itis also possible to extend Sacherer equation including linear
amplitude detuning (and going beyond the stability diagram theory).

. _ o Transverse
» Defining the dispersion integral as distribution
d
+ 00 d]y ']y ) Ffo
1(Q — lw,) = ] 7
0 Q= wo(Qyo + ayly) — lw
Amplitude
we can get: detuning
,01(7") _ijwOe g (T‘) 2 ]l’—l
I(Q _ lws) ZymOUUZQyO ° -

X i Z,[(Qyo + K)wo) J, [(Qyo T k- %) R

k=—o0

Equation obtained first by

+ 0o Q
Y. Chin, CERN/SPS/85-09 X j #d7 0. (7)) T + A4
(185 . pr(F) ], [(Qyo " R
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@) The determinant equation

» After some expansion on orthogonal polynomials, one gets an
equation of the form

+00 400
0,110, /
" " nn n
= M I..7 !/
0 2 z<1(ﬂ—l'ws)+ W")Cl

l'=—c0n’=0

where each coefficient of the matrix M can be computed analytically.

» Non trivial solutions are found if and only if () is the root of

611’61111’
det( o=yt ]V[m)l,n,]) =0

» lIssue: there is a priori no general strategy to find all the roots.

= this is a very difficult equation to solve.
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C

\E/RW s there a stability diagram still in the general case?

NS

Without trying to solve the full problem, we try to map the complex plane of
tuneshifts, thanks a broad scan of the phases and gains of a damper (inspired
by the LHC study by S. Antipov et al, CERN-ACC-NOTE-2079-0034).
Intensity = 0.001 x 10° p+/bunch, Q'=0
le-3 X plane, 10 A Making a fine mesh of phases and

8 - * modes for phase=90.0 deg . .
. . » modes for phase=108.0 deg gaInS, We Can Cover a Iarge area In
. ° * modes for phase=126.0 deg
E . . * modes for phase=144.0 deg the com pIeX plane:
. . ® e modes for phase=162.0 deg
° ¢ 1 * modes for phase=180.0 deg
61 s ] --- 2018 injection, neg. polarity 0.008 1
'. . ) —— 2018 injection, pos. polarity
5 (] . .
L] ° °
S % S e . 0.006
< 4 .0 . ® .
F{ o' ° -
[ ] L] it /_
! % ° . Case Q —0 0.004 -
3 )
. L ]
L]
2 - '.. P 0.002
e *et
L] ...
1 v .O.d'
", o 0.000 e
.‘. T T T T T T T T
0_ —— “\\ - —0.016 —-0.014 -0.012 -0.010 —0.008 —0.006 —0.004 —0.002 0.000
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
R(AQ) le-2
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@ Can we recover the stability diagram theory?

N4

» Strategy: for each gain/phase of the damper, we compute the determinant
along the real tune shifts— when it touches the stability diagram, the
minimum of this 1D curve should go to zero.

T
stab. diagram (loct = 100)
0.001757 d'=0.005, phase = 0.61
® d=0.01,phase=0.6n
® d=0.015,phase=0.6n
0.001501 e 4¢=0.0175 phase =0.6n 20.0 \ d=0.005, phase = 0.61
® d=0.02,phase=0.6n d=0.01, phase = 0.6
® d=0.025,phase=0.6n 17.5 \ d=0.015, phase = 0.61
0.00125 ° ) d=0.0175, phase = 0.61
0.02, phase = 0.6
25, phase = 0.6n
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) Generalized stability diagrams

NS

The color represents the minimum of the previous 1D curves:
10°

“Usual” stability diagram
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o
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N Effect of ch romaticity

NS

The color represents again the minimum of the 1D curves:

10°

1.4- Usual stability diagrams

around 0, -Q.and -20Q,
1.2

510_1
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o
e’
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‘ | Case Q=5
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U
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N Effect of ch romaticity

NS

The color represents again the minimum of the 1D curves:

10°
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Usual stability diagrams
around 0, -Q.and -20Q,

Case Q=715

102

— Generalized stability
diagrams, different from
the “usual” ones and

0.0 ' ' ’ 10— chromaticity dependent.
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@ Feedbacks and Landau damping

» Both can be understood heuristically as providing a damping rate for
certain modes.

» However, such a simple picture does not withhold a number of
observations, e.g. destabilizing effects.

» InaVlasov treatment, a more realistic picture can be obtained by:
U extending Sacherer equation with an ideal, bunch-by-bunch damper,

= unveils the ability of such a damper to stabilize high order headtail
modes and to destabilize the beam in some conditions,

U generalizing the same equation with linear amplitude detuning,

= could potentially extend the stability diagram theory, but requires to
overcome the difficulties to solve the obtained determinant equation.
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