

Fighting Nonlinear Dynamics with Nonlinear Elements: Nonlinear Integrable Optics Experiments at IOTA

Alexander Valishev for the IOTA Team Workshop on Mitigation Approaches for Hadron Storage Rings and Synchrotrons

22 June 2020

IOTA/FAST Facility: a center for Acc. and Beam Physics

 IOTA/FAST establishes a capability at FNAL, unique in the world, to address frontier topics in Accelerator and Beam Physics

- The only dedicated facility for intensity-frontier accelerator R&D; ranked as top facility ("Tier 1") for acc. & beam physics thrust by recent GARD review
- ~30 Collaborating institutions
- Nat. Lab Partnerships: ANL, BNL, LANL, LBNL, ORNL, SLAC, TJNAF
- Many opportunities for R&D with cross-office benefit in DOE/SC

IOTA/FAST Accelerators

Electron beams are supplied to IOTA from FAST, 1.3 GHz Superconducting RF electron linear accelerator

- Beam energy to IOTA: 40-200 MeV
- Bunch charge: 1e- to 3 nC (160 pC nominal)
- Injection frequency: up to 5 Hz

IOTA With Electrons

	Momentum	50-200 MeV
	Perimeter	40 m
	RF voltage	300 V
MP	RF frequency	30 MHz
	3 Experimental sections	2x180 cm, 1x150 cm
	Main vacuum chamber aperture (R)	25 mm
	Lambertson and kickers aperture (R)	20 mm
	Electrons bunch	10 ⁹ e, 160 pC, 1.2 mA

IOTA Layout

7 Fermilab

IOTA Main Components

Lambertson m	agnet	1	Horizontal, injection in vertical plane	
Kickers		1 hor. & 1 vert.	Horizontal for studies only	
Main dipoles		4x60 deg & 4x30 deg	Powered in series with Lambertson	
Quads		39	Powered in pairs with individual shunts	
Trims	Hor.	8	In main dipoles	
	Vert.	2	For injection bump	
	Hor.	20	Combined correctors	
	Vert.	20		
Skew-quads		20		
Pickups		21	Turn-by turn position	
Sync. light monitors		8	Shape and position	
RF		1	Dual frequency	
Solenoid 1		1	For electron and McMillan lenses	
Sextupoles 12		12	In six families	
DCCT		1	Precision calibrated DC beam current	
Wall current m	onitor	1	Bunch currents and longitudinal shape	

IOTA Lattice Configuration

IOTA with one DN nonlinear magnet

Sync. Tune @300V

0.001

3.8 E-4

Phase advance between insertions

IOTA/FAST Recent Timeline

Fermilab

Research in IOTA/FAST Experimental Run 2

Broad program: in all 9 experiments took data over 60 shifts and produced relevant results. Engagement of outside collaborators (CERN, SLAC, Jlab, Uchicago, NIU) and 6 graduate students.

1. Nonlinear Optics Measurements and Correction in the IOTA Ring	PI M.Hofer (R.Tomas), CERN		
2. Study of Intrabeam Scattering	V.Lebedev, FNAL		
3. Nonlinear Integrable Optics in Run 2	A.Valishev, FNAL		
4. Angular Measurement of Photons from Undulator Radiation in IOTA's Single Electron Mode	E.Angelico (H. Frisch/S. Nagaisev), UChicago		
5. Measurement of Spontaneous Undulator Radiation Statistics Generated by a Single Electron	S.Nagaitsev, I. Lobach, FNAL/UChicago		
6. Fluctuations in undulator radiation	I.Lobach (S. Nagaitsev/G. Stancari), UChicago		
7. Instability thresholds and integrable optics	N.Eddy, FNAL		
8. Investigations of Long-range and Short-range Wakefield Effects on Beam Dynamics in TESLA-type Superconducting Cavities	A.Lumpkin, FNAL		
9. Generation, Transport and Diagnostics of High-charge Magnetized Beams	P.Piot, NIU/ANL		
共 Coumilab			

Nonlinear Integrable Optics - Motivation

- All present machines are built around concept of linear focusing
 - Nonlinear aberrations ruin beam quality and particle stability
 - Nonlinear aberrations are intrinsic to charged particle beams and scale with beam brightness
 - Nonlinearities must be introduced to maintain beam's own immunity to coherent instabilities through Landau damping
- Can we attempt a major paradigm change to leave the linear focusing?
 - Let us build machines that are nonlinear by design but stable (like Solar system)
 - We have a novel approach...

History of Search for Stable Nonlinear Solutions

- Orlov (1963)
- McMillan (1967) **1D solution**
- Perevedentsev, Danilov (1990) generalization of McMillan case to 2D, round colliding beams. Require non-Laplacian potentials to realize
 - Implemented at VEPP-2000 collider at BINP (Novosibirsk, Russia) commissioned in 2006. Record-high beam-beam tune spread 0.25 attained in 2013
- Danilov, Shiltsev (1998) Non-linear low energy electron lenses suggested to fight beam-beam
 - Proof-of-principle in Tevatron in 2003; Full success in RHIC in 2015/16. Beam-beam tune spread 0.01→0.02. Luminosity improved by 50-100%
- Danilov, Nagaitsev (2010) Solution for nonlinear lattice with <u>2 invariants</u> of motion that can be implemented with Laplacian potential, i.e. with special magnets – *Phys. Rev. ST Accel. Beams 13, 084002 (2010)*

Nonlinear Integrable Optics - Criteria

- We want to build an optical focusing system that
 - a. Is strongly nonlinear = strong dependence of oscillation frequency on amplitude
 - b. Is 2D integrable and stable
 - c. Can be realized with magnetic fields in vacuum
- Mathematically, that means the system should
 - Possess two integrals of motion
 - Have a steep Hamiltonian
 - Field potential satisfies the Laplace equation
- Practical benefits relevant to future HEP machines
 - Reduced chaos in single-particle motion
 - Strong immunity to collective instabilities via Landau damping

🛠 Fermilab

Danilov-Nagaitsev Solution (2010)

- 1. Remove time dependence from Hamiltonian thus making it an integral of the motion
 - One integral already gives a better degree of regularity in the motion
 - Demonstrated with round colliding beams (BINP, 2013), 1/2-integer working point in colliders (KEK, 2004)
 - Crab-crossing at DAFNE (INFN/LNF, 2008)
- 2. Shape the nonlinear potential to find a second integral

Time-Independent Hamiltonian

- Start with a Hamiltonian $H = \frac{p_x^2}{2} + \frac{p_y^2}{2} + K\left(s\left(\frac{x^2}{2} + \frac{y^2}{2}\right) + V(x, y, s)\right)$
- Choose s-dependence of nonlinear potential V such that H is time-independent in normalized variables $z_N = \frac{z}{\sqrt{\beta(s)}}$,

 $p_N = p\sqrt{\beta(s)} - \frac{\beta'(s)z}{2\sqrt{\beta(s)}},$

🛠 Fermilab

$$H_{N} = \frac{p_{xN}^{2} + p_{yN}^{2}}{2} + \frac{x_{N}^{2} + y_{N}^{2}}{2} + \beta(\psi)V(x_{N}\sqrt{\beta(\psi)}, y_{N}\sqrt{\beta(\psi)}, s(\psi))$$
$$H_{N} = \frac{p_{xN}^{2} + p_{yN}^{2}}{2} + \frac{x_{N}^{2} + y_{N}^{2}}{2} + U(x_{N}, y_{N}, \psi)$$

- This results in *H* being the integral of motion
- Note there was no requirement on V can be made with any conventional magnets, i.e. octupoles

Implementation of Time-Independent Hamiltonian

1 Start with a round axially-symmetric *linear* lattice (FOFO) with the element of periodicity consisting of

a. Drift L

b. Axially-symmetric focusing block "T-insert" with phase advance $n \times \pi$

2 Add special nonlinear potential V(x,y,s) in the drift

Henon-Heiles Type Systems

• For example, build *V* with Octupoles

- Only one integral of motion H
- Tune spread limited to ~12% of Q_0

S. Antipov, S. Nagaitsev, A. Valishev, JINST 12 (2017) no.04, P04008

NIO with 2 Invariants of Motion – Special Magnet

Goals of Nonlinear Integrable Optics Research

- 1. Experimentally demonstrate viability of theoretical concepts
- Very strong academic interest stability of nonlinear systems
- Most importantly, show whether nonlinear focusing lattices offer practical benefits relative to linear lattices
- 2. Establish limits of applicability
- Are requirements to implementation tolerances supported by present-day technology?
- 3. Develop practical solutions for circular accelerators pushing the envelope in beam brightness without significant cost increase

Phased Approach

- Phase I research concentrates on the academic aspect of single-particle motion stability using electron beams
 - Demonstrate large amplitude-dependent detuning with conservation of dynamic aperture
 - Demonstrate practical machine tuning and limits of integrable optics stability in terms of imperfections, other nonlinearities, impact of longitudinal dynamics
 - Practical benefits in terms of improvement of coherent beam stability
- Phase II intense-beam studies with protons
 - Interplay between NIO and space-charge
 - Effect of NIO on halo formation, emittance growth and losses

Current Components of IOTA NIO Program

- 1. System with 1 invariant, aka Quasi-Integrable or Henon-Heiles Type. **Further referred to as QI.**
 - Implemented with Octupole string in BL straight
- 2. System with 2 invariants, aka Danilov-Nagaitsev or Elliptic potential. **Further referred to as DN.**
 - Implemented with special magnet (RadiaBeam) in BR straight
- 3. Effect of nonlinear optics on coherent beam stability

Implementation of NIO in IOTA

Round axiallysymmetric linear lattice 3.5 $\uparrow \beta(s)$ $1/\beta^3 (m^{-3})^{3.0}$ (FOFO) Dctupole relative strength Tinsert <mark>(2.0</mark> الع $-2\pi x n$ phase n 0 0 advance 1.0 0 0 0.5 Drift with $\beta_x = \beta_v$, no S dispersion L IOTA Version 6.5 2-magnet 10. 3. D_{3} β_x 9. Nonlinear insertions 2. Bending magnets 8. Quadrupoles 7. Sextupole correctors 1. β_x , β_x [m] 6. D_x [m RF cavity Combined dipole and skew-guad correctors 5. 0.0 Horizontal correctors 4. Vertical correctors 3. Horizontal kicker 2. Vertical kicker -2. Electrostatic BPMs (position, turn-by-turn) 1. Sync. light monitors (position and shape) 0.0 -3 0.0 15. 20. 25. 30. 35. 10. 5. 40.s [m] 🚰 Fermilab

Practical requirements:

•

Experimental Method

- Kick beam with V/H kicker to selected amplitude
- Record BPM turn-by-turn positions and beam intensity

0.6kV Vkick 1A octupoles 100 turns

🚰 Fermilab

Run-1 Results – Amplitude-Dependent Tune Shift

- ~60-70% of ideal performance for both types of NIO
- Clear improvement vs single octupole
- Beam loss attributed to aperture restriction in DR
- Limited machine tuning precision
- Too fast decoherence for invariant reconstruction

Run-2 Goals and Objectives, Staging

- 1. Demonstrate large (as predicted by modeling) nonlinear amplitude-dependent tune shift without reduction of dynamical aperture
 - For QI system as a function of Q_0 and strength = t
 - For DN system as a function of strength = t
- 2. Demonstrate conservation of dynamic invariants
 - Restore p_{x} , y_{y} , p_{y} from TBT data
- 3. Systematic study of sensitivity of the NIO systems to imperfections
 - T-insert mismatch
 - Intrinsic resonances
 - Effect of sextupoles
 - $Q_0 = \frac{1}{4}$ with octupoles
 - Effect of integer resonance for DN system at high *t*

Commissioning Summary

Goal for Run-2: achieve beam parameters, machine tuning and system performance necessary for the NIO experiments

- Octupoles: 10% beta-function accuracy, ~0.01 betatron phase accuracy, 100um orbit centering
- NL magnet: 1% beta-function, 0.001-0.003 betatron phase, 50um orbit centering
- Variable single-turn kick, H/V
- Turn-by-turn BPM system, 100um resolution

Simulations for the QI (Henon-Heiles Type) Octupole System

- Heavy simulations with elegant, via pyIOTA wrapper
 - Thick symplectic tracking fringe fields + errors + SR
- (Non)linear optics OCELOT + MADX + custom code
- Predicted strong impact of chromaticity
 - Need to reduce chroma to get more turns (more data)
 - But only have 2 families / 4 sextupoles (not properly π-phased) out of 12 possible
 - Nonlinearities hurt dynamics

Sextupoles only

Sextupoles + octupoles

Color scale - tune diffusion

Simulation Predictions for QI System

🛟 Fermilab

BPM Data Analysis Methods

Methods (briefly)

- Preprocessing
 - SVD cleaning, ROI cut based on SNR
- Tunes
 - Modified adaptive NAFF
- Linear optics
 - Model-independent methods

Phase space

- SVD/ICA decomposition
- Envelope function chromatic + octupolar decoherence fit with annealing/bin hopping
- · Parameter optimization for smallest invariant

QI Experimental Results (Stage 1 – tune shift)

Nominal config – 1.0A QI (central octupole)

- No aperture scans estimate from BPM sum
- Good match with FMA simulations
- Similar results at 0.75A/1.25A

QI Results (Stage 1)

Looking at invariants

- Analysis ongoing signal zoo, a lot of manual tweaking, complicated coupling
- Preliminary data using SVD modes
- No quantitative simulation comparison yet (beam size matters, need good bunch estimate)

🛟 Fermilab

QI Results (Stage 1)

Looking at invariants

- Flat configuration H-invariant jitter worse while CS invariants ~ same
- Simulation work in progress to verify results and estimate sensitivity

Fermilab

QI Results (Stage 2 – impact of imperfections)

Example: tune inside insert

- Small shifts little impact
- Large shifts different behavior, DA reduction, signal anomalies need stage 3

DN Results – Small-Amplitude Tune

DN Results (Stage 1 – tune shift) t=0.43

S.Szustkowski

Vertical:

Small Amplitude: Qy=0.12 Theoretical Maximum: Δ Qy = 0.085 Measured Run 1: Δ Qy = 0.0530 ± 0.0018 Measured Run 2: Δ Qy = 0.0524 ± 0.0013

Horizontal:

Small Amplitude: Qx = 0.406Theoretical Maximum: $\Delta Qx = 0.026$ Measured Run 1: $\Delta Qx = 0.0261 \pm 0.0017$ Measured Run 2: $\Delta Qx = 0.0300 \pm 0.0016$

DN Results (Stage 1 – tune shift) t=0.49

S.Szustkowski

Vertical: Small Amplitude: Qy = 0.042Theoretical Maximum: $\Delta Qy = 0.108$ Measured Run 2: $\Delta Qy = 0.125 \pm 0.0016$

Horizontal: Small Amplitude: Qx = 0.422Theoretical Maximum: $\Delta Qx = 0.036$ Measured Run 2: $\Delta Qx = 0.028 \pm 0.0021$

DN System – Phase Space Topology

0.90

DN Results – Phase Space Topology

- Recorded images with 1-second exposure from synchrotron light diagnostics
- Distance between the two fiexd points increases with nonlinear magnet t-strength
- At t=0.9 reached the mechanical aperture, one of the beamlets dies
 t=0.55
 t=0.68

DN Results – Crossing Integer with Beam

DN Results – Beam on Integer

Feedback System Overview

- Use horizontal button electrodes on E2L bpm with 32db RF pre-amplifier on each button
- BPM analog module based upon RF envelope detector conditions fast doublet into longer pulse – provides 32db of programmable gain control
- Implement 1 turn notch filter delay and phase delay with cable

Instability Threshold Study

- Study the gain threshold for fast instability as a function of beam current and octupole current
- With nominal emittance (~160-170um), step the feedback gain until a fast instability occurs (>10% beam loss)

$$AD \ Gain = \frac{10^{-\frac{att_{db}}{20}} * Ibe_{am}}{\sigma_{bl} \sqrt{2\pi}}$$

- The analog module attenuators were stepped in 1-2db steps until a fast instability occurred
- After each instability, wait for synchrotron radiation damping to restore beam to nominal emittance

Instability Threshold vs Octupole Current

- Landau damping is sensitive to tails in the beam distribution which are scraped away during an instability with beam loss
- For threshold instability, just the first loss event per store is used
- Observe increase in the threshold with octupole
- At 2A see factor of 2 increase in agreement with Run I

芬 Fermilab

TBT Data Analysis – Octupoles Off

Measure tune, gain, growth rate, and loss

TBT Data Analysis – QI Octupoles On

- Tune shift direction dependent on octupole sign
- Only see beam loss when tune shifts (always at 0.02 change)

🛟 Fermilab

Future Vision

IOTA/FAST schedule was and continues to be impacted by covid-19

Run-2 was cut short on March 21, 2020 due to Illinois stay-at-home order

🛠 Fermilab

- OSC installation and Proton Injector work was stalled until June
- Slow recovery

We Invite Collaboration – Proposals are Welcome!

- The IOTA/FAST Scientific Committee (ISC) evaluates experimental proposals and, together with the Fermilab Directorate, establishes research priorities for the facility.
- Experiments are proposed by Fermilab researchers or by external collaborators. If neither the Spokesperson or the Deputy Spokesperson is a Fermilab employee, a Fermilab Liaison is identified. Before starting experimental work, external members of all experiments register as Fermilab users in the FAST/IOTA Collaboration, which serves as a general umbrella organization for administrative purposes.
- Proposals can be submitted any time. The ISC meets about once a month to discuss and evaluate the proposals.
- Three stages
 - Preliminary Discussions and Letter of Intent
 - Proposal Preparation and Submission
 - Scientific and Technical Reviews

- Proposal template [
 ^O PDF] [
 ^O LaTeX]
- D Presentation given at the
 FAST/IOTA Collaboration Meeting (June 2019)
- Note on data storage options for IOTA/FAST experiments:

 Beams-doc-8245

Reference Material

- FAST Website <u>https://fast.fnal.gov</u>
- FAST Indico <u>https://indico.fnal.gov/category/373/</u>
- 2019 Collaboration Meeting <u>https://indico.fnal.gov/event/20279/</u>
- IOTA E-Lens wiki <u>https://cdcvs.fnal.gov/redmine/projects/iota-</u> <u>e-lens/wiki</u>
- IOTA Fluctuations in Synchrotron Radiation wiki <u>https://cdcvs.fnal.gov/redmine/projects/fur/wiki</u>
- IOTA/FAST Scientific Committee wiki <u>https://cdcvs.fnal.gov/redmine/projects/ifsc/wiki</u>

