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Part I. Introduction to Machine Learning
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• Tasks that are extremely easy and obvious for us are difficult to program in 
traditional ways

• Impossible to learn every possible rule to perform a task

➢ learn from examples instead
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Teaching machines to learn from experience
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Teaching machines to learn from experience

Cat?
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Relevant ML concepts and definitions

Supervised Learning Unsupervised Learning Reinforcement Learning

• Input/output pairs available
• Make prediction for unknown 

input based on experience 
from given examples

• Only input data is given
• Learn structures and 

patterns

• No training data
• Interact with an environment
• Trying to learn optimal 

sequences of decisions

* Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, 1997.

Object detection in computer 
vision, speech recognition, 

predictive control

Anomaly detection, pattern 
recognition, clustering, 

dimensionality reduction

Robotics, industrial automation, 
dialog systems

"… computer programs and algorithms that automatically improve with experience by learning from 
examples with respect to some class of task and performance measure, without being 
explicitly programmed." *



How does the learning work in practice?
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Cat

1. Collect examples 2. Preliminary processing 3. Training, tuning, validation 4. Prediction

Data sample
Input Features Model

Output
(target variable)

Supervised Learning
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Supervised Learning

Training 
input data

Function with adjustable 
parameters (weights, bias)

Model 
output

Training 
output data

Compute the loss (approximation error ):
e.g. MSE, MAEexample 1

example 2
example 3
.
.
. 𝒚 = 𝒇 𝒙𝒊𝒘𝒊 + 𝒃

Neural Network as an example:

➢ Weights w from the inputs x

➢ Activation function f

➢ Output y of a single neuron: 𝑦 = 𝑓 σ𝑥𝑖𝑤 + 𝑏

How does the learning work in practice?

Universal Approximation Theorem: A simple neural network including only a single 
hidden layer can approximate any bounded continuous target function with arbitrary 
small error. (Cybenko, 1989, for sigmoid activation functions)

w1

w2

w3

x1

x2

x3

Input

Activation function

fΣ

Weighted sum
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Adjust parameters
Minimizing the loss

e.g. Gradient Descent
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Training and generalization: no perfect model needed!

Simple models underfit
• Derivate from data (high bias)
• Do not correspond to data structure

(low variance)

Complex models overfit
• Very low systematical deviation (low bias)
• Very sensitive to data (high variance)

We don‘t want „look up tables“
We don‘t want unreliable prediction

→ Bias-Variance tradeoff



• Regression and Classification Models: resolve correlation between input variables and 
dependent target variables
• Simple Linear Regression, Multivariate Regression, Logistic regression, Support Vector Machine

• Dimensionality reduction techniques: reduce the number of independent variables 
(features) without significant decrease on prediction accuracy
• Independent Component Analysis, Principle Component Analysis, Features Importance Analysis

• Decision Trees: split the input data based on a sequence of variables (thresholds) to estimate 
the target output value or to separate data points into regions
• Ensemble methods: Train several slightly different models and take majority vote/ average of the prediction

• Clustering: grouping or separating data objects into clusters
• Identify hidden patterns in the data, similarities and differences
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ML is more than Neural Networks…
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ML is more than Neural Networks…

Machine Learning is about learning from the data, not about 
application of a particular “intelligent” technique.



Part II. Application in Accelerator Physics
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Accelerators

Limitations of traditional 
optimization and modeling tools?
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ML is a powerful 
tool for prediction and 

data analysis

Which limitations can be solved by ML 
with reasonable effort?

Motivation

➢How to deal with previously unobservable behavior?
➢Required computational resources for large amount of optimization targets
➢Objective functions, specific rules and thresholds have to be known

Machine Learning methods can learn an arbitrary model from 
given examples without requiring explicit rules
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Current areas of ML application

Anomaly and Fault 
Detection

Virtual 
Diagnostics

Surrogate and 
Predictive 
Modeling

Tuning
Optimization

Control
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Tuning and Control

• Automatic alignment of LHC collimators based on beam loss spike recognition using an ensemble of several ML 
models. [G. Azzopardi et al., “Operational results on the fully automatic LHC collimator alignment”, Phys. Rev. Accel. 
Beams 22, 093001 (2019)]

• Maximization of the average pulse energy in FELs by tune up to 105 components simultaneously based on average 
bunch energy. [A. Scheinker et al.,  "Model-independent tuning for maximizing free electron laser pulse energy", Phys. 
Rev. Accel. Beams (22), 082802 (2019)]

• Multi-objective optimization of minimizing transverse electron beam size at the end of the electron beam line of 
CERN’s Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) while maintaining a design 
orbit. [A. Scheinker et al., “Online Multi-Objective Particle Accelerator Optimization of the AWAKE Electron Beam Line for 
Simultaneous Emittance and Orbit Control”, arXiv:2003.11155]

• Reinforcement Learning based feedback system to stabilize the beam dynamics and control instabilities. [T. Boltz et al. 
“Feedback Design for Control of the Micro-Bunching Instability based on Reinforcement Learning”, IPAC’19 
(MOPGW017)]

• Bayesian approach for maximizing x-ray laser pulse energy by controlling groups of quadrupole magnets.
[J. Duris et al. Bayesian Optimization of a Free-Electron Laser, Phys. Rev. Lett. 124, 124801 (2020)]

➢ Simultaneous optimization of multiple properties in a large parameter space, automation of manual tasks. 

https://arxiv.org/abs/2003.11155
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• Bayesian approach for maximizing x-ray laser pulse energy by controlling groups of quadrupole magnets.
[J. Duris et al. Bayesian Optimization of a Free-Electron Laser, Phys. Rev. Lett. 124, 124801 (2020)]

➢ Simultaneous optimization of multiple properties in a large parameter space, automation of manual tasks. 

➢ The widest application area since ML tools are naturally developed for 
automation/ control tasks,

➢ Becoming standard tools for operation.

➢ Various ML techniques can be applied to one problem – choice based 
on experience / already available frameworks,

➢ But also: one developed technique can be applied to several problems
on different machines.

https://arxiv.org/abs/2003.11155
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Anomaly and Faults Detection

• Detection of outliers in the numerical computations of dynamic aperture
[M. Giovannozzi et al., "Machine learning and beam dynamics activities at the CERN Large Hadron Collider.", to 
be published]

• Automatic detection of heating effects based on pressure reading, labeling datasets for supervised 
classification using clustering [F. Giordano et al. “Automatic classification of vacuum gauge”, 
https://indico.cern.ch/event/927925]

• Instability detection for the LHC transverse feedback system using decision trees 
[L. Coyle et al., https://wiki.epfl.ch/fcc-epfl-lpap/machinelearning]

• Detection and classification of RF Cavity Faults using supervised models  [A. Solopova et al. , “SRF Cavity Faults 
Classification Using Machine Learning at CEBAF”, IPAC’19 (TUXXPLM2)]

• Hierarchical Temporal Memory and Recurrent NNs applied to anomaly detection for sensor failures at HIPA, PSI 
[J. Coello de Portugal, https://indico.psi.ch/event/8624]

➢ Detection and prevention of unusual, undesired events.

https://wiki.epfl.ch/fcc-epfl-lpap/machinelearning
https://doi.org/10.18429/JACoW-IPAC2019-TUXXPLM2
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• Hierarchical Temporal Memory and Recurrent NNs applied to anomaly detection for sensor failures at HIPA, PSI 
[J. Coello de Portugal, https://indico.psi.ch/event/8624]

➢ Detection and prevention of unusual, undesired events.

➢ Some operational examples
➢ Many studies under investigation
➢ Unsupervised learning can be used, without requiring large amount of data.

➢ Careful choice of data to perform the classification/ anomaly detection is 
crucial (feature engineering),

➢ Structured data logging can be very helpful.

https://wiki.epfl.ch/fcc-epfl-lpap/machinelearning
https://doi.org/10.18429/JACoW-IPAC2019-TUXXPLM2
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Surrogate and Predictive Modeling

• Orbit corrections studies, early attempts:
Y. Kijima, "A beam diagnostic system for accelerator using Neural Networks", 1992
E. Bozoki, "Neural Network technique for orbit correction in accelerators", 1994
E. Meier, "Orbit correction studies using Neural Networks", 2012

• Bayesian approach for linear optics correction [Y. Li, R. Rainer, W. Cheng, "Bayesian approach for linear optics 
correction", Phys. Rev. Accel. Beams (22), 012804 (2019)]

• Nonlinear, fast-executing surrogate models that are trained on sparse sampling of the physics simulation 
[A. Edelen et al., “Machine Learning for Orders of Magnitude Speedup in Multi-Objective Optimization of 
Particle Accelerator Systems ”, Phys. Rev. Accel. Beams (23), 044601 (2020)]

• Training of NN to predict vertical beam size at one position from multiple Insertion Device settings, allows to 
correct the beam size [S.C. Leemann, “Demonstration of Machine Learning-Based Model-Independent 
Stabilization of Source Properties in Synchrotron Light Sources”, Phys. Rev. Lett. 123, 194801 (2019)]

➢ Learning underlying physical processes in the correlations of input and output data.
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• Training of NN to predict vertical beam size at one position from multiple Insertion Device settings, allows to 
correct the beam size [S.C. Leemann, “Demonstration of Machine Learning-Based Model-Independent 
Stabilization of Source Properties in Synchrotron Light Sources”, Phys. Rev. Lett. 123, 194801 (2019)]

➢ Learning underlying physical processes in the correlations of input and output data.

➢ Neural Networks can be very useful to model non-linear tasks,
➢ Also simpler liner models can be applied if the problem is known to be linear.
➢ Different ML methods are investigated demonstrating good suitability for 

modeling tasks.
➢ Wide application range from simulations to real time diagnostics.
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Virtual Diagnostics
➢ Provide real-time information using non-invasive diagnostics by predicting 

beam parameters from other available properties.

• Single-shot x-ray diagnostics in an XFEL : learning physical process behind correlations between input and output of 
ML model, while analytical modelling of every experimental aspect is not possible. [A. Sanchez-Gonzalez, et al., 

“Machine learning applied to single-shot x-ray diagnostics in an XFEL”, https://arxiv.org/abs/1610.03378]

• Longitudinal phase space (LPS) prediction using ANN, based on the correlation between LPS distribution and various 
accelerator parameters. [C. Emma et.al "Machine learning-based longitudinal phase space prediction of particle 
accelerators", Phys. Rev. Accel. Beams (21), 112802 (2018)]

• Computer vision techniques to predict x-ray temporal power profile . [X. Ren et.al. “Temporal power reconstruction for 
an x-ray free-electron laser using convolutional neural networks ”, Phys. Rev. Accel. Beams 23, 040701 (2020)]

• Prediction of  longitudinal phase information from noisy beam position monitors data based on ML-image processing. 
[X. Xu, Y. Zhou, and Y. Leng, “Machine learning based image processing technology application in bunch longitudinal 
phase information extraction”, Phys. Rev. Accel. Beams 23, 032805 (2020)]

• Classification of beam losses to understand the impact on luminosity and lifetime of accelerator components
[G. Valentino, B. Salvachua , “Machine Learning applied at the LHC for beam loss pattern classification”, IPAC18 
(WEPAF078)]

https://arxiv.org/abs/1610.03378
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• Classification of beam losses to understand the impact on luminosity and lifetime of accelerator components
[G. Valentino, B. Salvachua , “Machine Learning applied at the LHC for beam loss pattern classification”, IPAC18 
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➢ Virtual diagnostics tools mostly implemented using neural networks,
➢ For image-based diagnostics: Convolutional Neural Networks (known to be 

very efficient in computer vision)
➢ Simulation studies, but some methods also demonstrated on the machines.

https://arxiv.org/abs/1610.03378


Part II. Experience with ML 
in optics measurements and corrections
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I. Detection of faulty BPMs 

• Optics is reconstructed from Beam Position Monitors (BPM) signal which is denoised and cleaned 
using SVD and signal cuts.

• Presence of remaining faulty signal can be observed only in the last analysis step – optics 
reconstructed from BPM signal →manual cleaning and repeating optics computation are required.

→ How to detect as many faulty BPMs as possible before they appear as outliers in optics functions?

→ Unsupervised Learning using Isolation Forest (Ensemble of Decision Trees) 

Conceptual illustration of Isolation Forest algorithm

• Random splits aiming to 
“isolate” each point.

• The less splits are needed, the 
more “anomalous”.

• Expected proportion of outliers is
a parameter of the algorithm.
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Using harmonic properties of BPM turn-by-turn signal as input data and setting the expected proportion 
of anomalies in the data to 1%.
➢ Isolation Forest detects most of the faulty BPMs remaining after the cleaning with traditional tools. 

IF-cleaning is based on the structures in given data
→ Ability to identify anomalies without predefined 

thresholds or rules.

False identification of good BPMs as anomalies is possible
→ Choice of contamination parameter and interplay with 
other cleaning tools are carefully studied on simulations.

✓ IF is fully integrated into optics measurements at LHC
✓ Successfully used in operation under different optics settings.

I. Detection of faulty BPMs 
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II. Estimation of quadrupole errors

• Corrections aim to minimize the difference between the measured and design optics by changing the 
strength of corrector magnets – single quadrupoles and quadrupoles powered in circuits.

How to get the entire set of currently present magnet errors in one step? 
→ Train supervised regression model to predict magnet errors from optics perturbations caused by these errors.

Training samples:
• 1256 target variables
- randomly assigned gradient errors in the all
quadrupoles, both beams

• 3304 input variables: simulated betatron phase 
advance, normalized dispersion at all BPMs, β at 
BPMs next to IPs.

- Adding realistic noise estimated from the 
measurements.
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Supervised Learning allows to determine 
realistic quadrupole errors directly from 

optics deviations.

• Linear regression with weights regularization (Ridge)
• 75 000 samples from simulations (80% training, 20% test) 
• Systematic error of prediction 16%, random error ~30%

Prediction of simulated individual magnet errors. 

• Verification on measurements data: provide LHC 
optics measurement as input to the trained model.

• Real individual magnet errors are unknown 
→ Simulate optics perturbation with predicted errors
→ Compare to the measurement used as input.

Magnet errors predicted with ML-model 
reproduce the measured β -beating with

average rms error of 5%

II. Estimation of quadrupole errors
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• Results on real data are less optimistic than simulations
→More realistic simulations of training data by introducing more error sources.

• In some machine sections individual quadrupoles cannot be directly used for corrections – only circuits.
→ Translate the predicted single magnets errors into correction settings.

• Quality of prediction depends on noise in the input 
data and available BPMs:

→ Autoencoder Neural Network to denoise and 
reconstruct phase measurements.

First results on simulations: 
→ Noise is reduced by a factor of 2 
→ Phase advance measurements at 

simulated missing BPMs reconstructed with 
1% accuracy.

II. Estimation of quadrupole errors



Part V. Conclusions
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ML in accelerators: summary

Accelerator Problem ML methods Benefits To be considered

• Automation of particular 
components 

Supervised techniques for 
classification: Decision Trees, 
SVR, Logistic Regression, NN

Saving operation time, 
reducing human intervention, 

preventing subjective decisions

Dedicated machine time 
usually required to collect 

training data and to fine tune 
developed methods.

• Online optimization of 
several targets which are 
coupled

• Unexpected drifts, 
continuous settings 
readjustment needed to 
maintain beam quality

Reinforcement Learning,
Bayesian optimization,

Gaussian Process,
Adaptive Feedback

Simultaneous optimization 
targeting several beam 

properties, automatically 
finding trade-off between 

optimization targets, allows 
faster tuning offering more 

user time.

Ensuring that all important  
properties are included as 

optimization targets.

• Detection of anomalies Unsupervised methods: 
clustering, ensembles of 

decision trees (e.g. Isolation 
Forest), supervised 

classification, Recurrent NN for 
time-series data.

Preventing faults before they 
appear, no need to define 

rules/ thresholds,
no training is needed and can 

be directly applied on received 
data

In unsupervised methods, 
usually no “ground truth” is 
available →methods can be 

verified on simulations.
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ML in accelerators: summary

Accelerator Problem ML methods Benefits To be considered

• Computationally heavy, 
slow simulations

• Reconstruct unknown 
properties from 
measurements

Supervised Regression models, 
NN for non-linear problems

Learning underlying physics 
directly from the data, faster 

execution

100% realistic simulations 
are not possible → the 

model performance will be 
as good as your data is.

• Reduction of parameter 
space e.g. for optimization

Clustering, Feature Importance 
Analysis using Decision trees

Speed up of available methods, 
simpler defined problems, easier 

to interpret

Parameter selection and 
combination (feature 
engineering) can have 

significant impact on ML 
methods performance

• Missing or too noisy data Autoencoder NN Robust models, data quality Significant information 
should not be removed 

from the signal.
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Potentially useful, but not (widely) used yet
Some ideas…

• Transfer Learning

- Train model on one problem domain, apply on another task after re-training,
- Data set required for re-training can be much smaller than data set used in initial training,
- Real-time application (e.g. re-training using data recorded in operation), 
possibility to take advantage from previous efforts.

• Inverted Models

- Train to predict a set of output targets from a set of input parameters.

- Invert the model and use the learned correlation to predict the “input” parameters from targets,

e.g. to predict settings from desired beam properties.

• Text processing
- Logbooks contain a lot of unstructured information, which can be relevant to build 

automation/control ML tools.
- Extract relevant information automatically by analyzing text entries using e.g. Ontology Learning.
- Use extracted information to build models for machine components failures prediction, to automatize 

operation, etc.



Important to identify where ML can surpass traditional methods

• How much effort is needed to implement a ML solution? Is appropriate infrastructure for data 
acquisition available? Enough resources to perform the training?
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Conclusions

Universal Approximation Theorem
A simple neural network including only a single hidden layer can approximate any 
bounded continuous target function with arbitrary small error.

Does not say how big the 
effort could be…

➢ Define a narrow task (optimization of specific parameters rather than the entire machine)
➢ Performance measure of selected model (beam size, pulse energy, …)
➢ Feature engineering is highly important!

➢ Well structured data, extendable architecture of existing frameworks
→ possibility for the integration of ML tools.

➢ Extremely helpful e.g. when no analytical solution is available, for rapidly changing systems,  when no 
direct measurements are possible.



Thank you for your attention!
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Cat!



Frameworks to use:

• Prototyping, fast and easy implementation (very good documentation):
http://scikit-learn.org/

• High-level package for Neural Networks: – https://keras.io/

• Deep Learning, specific complex model architectures:
https://www.tensorflow.org/
http://deeplearning.net/software/theano/

• Reinforcement Learning: OpenAI Gym https://gym.openai.com/
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Practical advice
• Often data preprocessing is needed before any model can be applied:

rescaling, feature engineering, denoising, outlier elimination
➢ data vizualisation can help

• Start with simple models - increase complexity only if needed
• Estimate model generalization (split into training, test and validation sets)

http://scikit-learn.org/
https://keras.io/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://gym.openai.com/

