Motivation
 New Map
 Test on HL-LHC
 What about LHC?
 Amplitude Beta-Beating
 Conclusion
 Bibliography

 00
 0000000
 000
 000
 000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 0

Fringe fields: more relevant than the body?

Thomas Pugnat¹ B. Dalena¹, L. Bonaventura², A. Simona², Thanks: R. De Maria³, V. K. Berglyd Olsen³, R. Tomás³, E. H. Maclean³, O. Napoly¹, C. Lorin¹, S. Izquierdo Bermudez³

¹CEA - DRF/Irfu/DACM

²MOX, Politecnico di Milano

³CERN

Mitigation Approaches for Storage Rings and Synchrotrons

22th June 2020

Motivation	New Map	Test on HL-LHC	What about LHC?	Amplitude Beta-Beating	Conclusion	Bibliography
•0						
Contents						

Motivation O	New Map 000000	Test on HL-LHC	What about LHC?	Amplitude Beta-Beating	Conclusion OO	Bibliography O
Motivatio	n					

In order to improve the design, performance and control of future hadronic circular colliders, does the longitudinal distribution of the magnetic fields non-linearities inside the magnet has an impact on the beam dynamic?

Goals:

- Develop a "realistic" non-linear transfer map for tracking studies.
- Use calculated or measured magnetic field map given by the magnet designers.
- Study observables sensitive to the longitudinal field description.

Motivation	New Map ●○○○○○	Test on HL-LHC	What about LHC?	Amplitude Beta-Beating	Conclusion OO	Bibliography O
Contents						

Motivation

Creation of a New Transfer Map

- Generalized Gradient and Vector potential
- Building the New Transfert Map
- Comparison of Direct and Cross Amplitude Detuning expressions

Itest on HL-LHC

What about LHC?

A variation of the beta-beating with the Amplitude? (Preliminary results)

00	00000	00000000	000	000	00	0
Motivation	New Map	Test on HL-LHC	What about LHC?	Amplitude Beta-Beating	Conclusion Bibliog	Bibliography

Definition of the Generalized Gradient

- Usually, the harmonics used for the simulation are averaged over the magnet.
- But in the harmonics profile, there is a strong variation of their strength in the extremity (geometry of the heads).

Hard Edge (S. White Ref. [1]):

$$\begin{split} B_{Y} + iB_{X} &= \sum_{n \in \mathbb{N}} (b_{n,c} + ib_{n,s})(x + iy)^{n} \\ & \Downarrow \\ \bar{b}_{n,c} &= \frac{1}{L_{Ele.}} \int_{z \in Ele.} \frac{1}{(n-1)!} \left. \frac{\partial^{n-1}B_{Y}}{\partial x^{n-1}} \right|_{0,0,z} dz \\ \bar{b}_{n,s} &= \frac{1}{L_{Ele.}} \int_{z \in Ele.} \frac{1}{(n-1)!} \left. \frac{\partial^{n-1}B_{X}}{\partial x^{n-1}} \right|_{0,0,z} dz \end{split}$$

Using Generalized Gradient:

$$B_{\rho} = \sum_{n \in \mathbb{N}} B_{n,c}(R, z) \cos(n\phi) + B_{n,s}(R, z) \sin(n\phi)$$

$$\Downarrow$$

$$C_{n,u}^{[ND]}(z) = \frac{i^{ND}}{2^n n!} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{k^{ND+n+1}}{I'_n(Rk)} \tilde{B}_{n,u}(R,k) e^{ikz} \, \mathrm{d}k \quad \text{for } u \in \{s,c\}$$

 Motivation
 New Map
 Test on HL-LHC
 What about LHC?
 Amplitude Beta-Beating
 Conclusion
 Bibliography

 00
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <td

Vector potential using Generalized Gradient

$$a_x(x,y,z) =$$

$$\frac{q}{p_{0c}} \sum_{n}^{\infty} \sum_{l}^{\infty} \frac{(-1)^{l}(n-1)!}{2^{2l}l!(l+n)!} - \left[\sum_{p=0}^{n/2} \sum_{q=0}^{l} \binom{n}{2p} \binom{l}{q} (-1)^{p} x^{n+2(l-p-q)+1} y^{2(p+q)} C_{n,s}^{\lceil 2l+1 \rceil}(z) - \sum_{p=0}^{(n-1)/2} \sum_{q=0}^{l} \binom{n}{2p+1} \binom{l}{q} (-1)^{p} x^{n+2(l-p-q)} y^{2(p+q)+1} C_{n,c}^{\lceil 2l+1 \rceil}(z) \right]$$

$$a_{y}(x, y, z) = \frac{q}{p_{0}c} \sum_{n}^{\infty} \sum_{l}^{\infty} \frac{(-1)^{l}(n-1)!}{2^{2l}l!(l+n)!} - \left[\sum_{p=0}^{n/2} \sum_{q=0}^{l} \binom{n}{2p} \binom{l}{q} (-1)^{p} x^{n+2(l-p-q)} y^{2(p+q)+1} C_{n,s}^{[2l+1]}(z) - \sum_{p=0}^{(n-1)/2} \sum_{q=0}^{l} \binom{n}{2p+1} \binom{l}{q} (-1)^{p} x^{n+2(l-p-q)-1} y^{2(p+q+1)} C_{n,c}^{[2l+1]}(z) \right]$$

$$\begin{aligned} a_{z}(x,y,z) &= \quad \frac{q}{p_{0c}} \sum_{n}^{\infty} \sum_{l}^{\infty} \frac{(-1)^{l+1}(n-1)!(2l+n)}{2^{2l}l!(l+n)!} & \quad \left[\sum_{p=0}^{n/2} \sum_{q=0}^{l} \binom{n}{2p} \binom{l}{q} (-1)^{p} x^{n+2(l-p-q)} y^{2(p+q)+1} C_{n,s}^{[2l]}(z) \\ &\quad - \sum_{p=0}^{(n-1)/2} \sum_{q=0}^{l} \binom{n}{2p+1} \binom{l}{q} (-1)^{p} x^{n+2(l-p-q)-1} y^{2(p+q)} C_{n,c}^{[2l]}(z) \right] \end{aligned}$$

Metw Map
OOTest on HL-LHC
OOOWhat about LHC?
OOOAmplitude Beta-Beating
OOOConclusion
OOBibliography
OOBuilding the New Transfert Map with Lie Algebra8 D equivalent Hamiltonian for quadrupole (Y. K. Wu 2003 Ref. [2]):
$$H[x, p_x, y, p_y, s, \delta; z] = -\sqrt{(1+\delta)^2 - (p_x - a_x)^2 - (p_y - a_y)^2} - a_z$$

 ψ $K[x, p_x, y, p_y, s, \delta, z, p_z; \sigma] = p_z - \delta - a_z + \frac{(p_x - a_x)^2}{2(1+\delta)} + \frac{(p_y - a_y)^2}{2(1+\delta)}$

Using the Lie Algebra formalism:

$$M(\Delta \sigma) = \exp(-L:K:)$$

But terms of the type $(p_{x,y} - a_{x,y})^2$ are not exactly solvable! So another transformation is needed.

$$\begin{split} \mathsf{M}(\Delta\sigma) &= \exp\left(\frac{-\Delta\sigma}{2}:K1:\right)\exp\left(-\frac{\Delta\sigma}{2}:K2:\right) \\ &\quad \exp\left(:K3':\right)\exp\left(-\frac{\Delta\sigma}{2}:K3:\right)\exp\left(:-K3':\right) \\ &\quad \exp\left(:K4':\right)\exp\left(-\Delta\sigma:K4:\right)\exp\left(:-K4':\right) \\ &\quad \exp\left(:K3':\right)\exp\left(-\frac{\Delta\sigma}{2}:K3\right)\exp\left(:-K3':\right) \\ &\quad \exp\left((-\frac{\Delta\sigma}{2}:K2:\right)\exp\left(-\frac{\Delta\sigma}{2}:K1:\right)+O(\Delta\sigma^3) \\ &\quad = M2+O(\Delta\sigma^3) \\ \end{split}$$
with:
$$\begin{split} K1 &= pz - \delta \quad K3 = \frac{p_X^2}{2(1+\delta)} \quad K3' = fa_X \, \mathrm{dx} \\ K2 &= a_Z \quad K4 = \frac{p_X^2}{2(1+\delta)} \quad K4' = fa_Y \, \mathrm{dy} \end{split}$$

 Motivation
 New Map
 Test on HL-LHC
 What about LHC?
 Amplitude Beta-Beating
 Conclusion
 Bibliography

 00
 0000000
 000
 000
 000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

The New Lie Transfert Map

$$\begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix}_{i+1/7} = \begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix}_{i} + \frac{dz}{2} \begin{pmatrix} \frac{\partial a_{z}(x_{i},y_{i},i)}{\partial x} \\ \frac{\partial a_{z}(x_{i},y_{i},i)}{\partial y} \end{pmatrix} - \begin{pmatrix} a_{x}(x_{i},y_{i},i) \\ \frac{\partial a_{x}(x_{i},y_{i},i)}{\partial y} dx \end{pmatrix}$$

$$x_{i+2/7} = x_{i+1/7} + \frac{dz}{2} \frac{p_{x,i+1/7}}{1+\delta}$$

$$\begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix}_{i+3/7} = \begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix}_{i+2/7} + \begin{pmatrix} \int \frac{a_{x}(x_{i+2/7},y_{i+2/7},i)}{\partial y} dx \end{pmatrix} - \begin{pmatrix} \int \frac{\partial a_{y}(x_{i+2/7},y_{i+2/7},i)}{\partial x} dy \\ a_{y}(x_{i+2/7},y_{i+2/7},i) dx \end{pmatrix}$$

$$y_{i+4/7} = y_{i+3/7} + dz \frac{p_{y,i+3/7}}{1+\delta}$$

$$\begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix}_{i+5/7} = \begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix}_{i+4/7} + \begin{pmatrix} \int \frac{\partial a_{y}(x_{i+4/7},y_{i+4/7},i)}{\partial y} dx \\ a_{y}(x_{i+4/7},y_{i+4/7},i) dx \end{pmatrix} - \begin{pmatrix} \int \frac{\partial a_{x}(x_{i+4/7},y_{i+4/7},i)}{\partial y} dx \end{pmatrix}$$

$$x_{i+6/7} = x_{i+5/7} + \frac{dz}{2} \frac{p_{x,i+5/7}}{1+\delta}$$

$$\begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix}_{i+1} = \begin{pmatrix} p_{x} \\ p_{y} \end{pmatrix}_{i+6/7} + \begin{pmatrix} \int \frac{a_{x}(x_{i+6/7},y_{i+6/7},i)}{\partial y} dx \end{pmatrix} + \frac{dz}{2} \begin{pmatrix} \frac{\partial a_{z}(x_{i+6/7},y_{i+6/7},i)}{\partial x} \\ \frac{\partial a_{z}(x_{i+6/7},y_{i+6/7},i)}{\partial y} \\ \frac{\partial a_{z}(x_{i+6/7},y_{i+6/7},i)}{\partial y} \end{pmatrix}$$

 Motivation
 New Map
 Test on HL-LHC
 What about LHC?
 Amplitude Beta-Beating
 Conclusion
 Bibliography

 OC
 OC

 ΔQ_X

For averaged magnetic harmonics:

$$\Delta Q_x = \frac{q}{2\pi\rho_0 c} \sum_i \left[\frac{3}{8} \left(\beta_x^2 \bar{b}_4 \right)_i (2J_x) - \frac{3}{4} \left(\beta_x \beta_y \bar{b}_4 \right)_i (2J_y) + \frac{5}{16} \left(\beta_x^3 \bar{b}_6 \right)_i (2J_x)^2 + \frac{15}{16} \left(\beta_x \beta_y^2 \bar{b}_6 \right)_i (2J_y)^2 - \frac{15}{8} \left(\beta_x^2 \beta_y \bar{b}_6 \right)_i (2J_x 2J_y) \right]$$

$$\begin{split} \Delta Q_y &= \frac{q}{2\pi\rho_0 c} \sum_i \left[\frac{3}{8} \left(\beta_y^2 \overline{b}_4 \right)_i (2J_y) \right. & \Delta Q_y \\ &- \frac{3}{4} \left(\beta_x \beta_y \overline{b}_4 \right)_i (2J_x) \\ &- \frac{5}{16} \left(\beta_y^3 \overline{b}_6 \right)_i (2J_y)^2 \\ &- \frac{15}{16} \left(\beta_x^2 \beta_x \overline{b}_6 \right)_i (2J_x)^2 \\ &+ \frac{15}{8} \left(\beta_x \beta_y^2 \overline{b}_6 \right)_i (2J_x 2J_y) \right] \end{split}$$

For Generalized Gradients:

$$= \frac{q}{2\pi\rho_{0c}}\sum_{i}\left[\frac{3}{8}\left(4\beta_{x}^{2}C_{4,s}^{(0)}+2\beta_{x}\alpha_{x}C_{2,s}^{(1)}-\frac{2}{3}\beta_{x}^{2}C_{2,s}^{(2)}\right)_{i}(2J_{x})\right.\\ \left. -\frac{3}{4}\left(4\beta_{x}\beta_{y}C_{4,s}^{(0)}-\frac{1}{3}(\beta_{x}\alpha_{y}-\beta_{y}\alpha_{x})C_{2,s}^{(1)}\right)_{i}(2J_{y})\right.\\ \left. +\frac{5}{16}\left(6\beta_{x}^{2}C_{6,s}^{(0)}+\frac{3}{2}\beta_{x}^{2}\alpha_{x}C_{4,s}^{(1)}-\frac{9}{20}\beta_{x}^{2}C_{4,s}^{(2)}\right)_{i}(2J_{x})^{2}\right.\\ \left. +\frac{15}{16}\left(6\beta_{x}\beta_{y}^{2}C_{6,s}^{(0)}+\frac{1}{5}\beta_{y}\left(\frac{\beta_{y}\alpha_{x}}{2}-3\beta_{x}\alpha_{y}\right)C_{4,s}^{(1)}+\frac{3}{20}\beta_{x}\beta_{y}C_{4,s}^{(2)}\right)_{i}(2J_{y})^{2}\right.\\ \left. -\frac{15}{8}\left(6\beta_{x}^{2}\beta_{y}C_{6,s}^{(0)}-\frac{1}{5}\beta_{x}\left(\frac{\beta_{x}\alpha_{y}}{2}-3\beta_{y}\alpha_{x}\right)C_{4,s}^{(1)}-\frac{3}{20}\beta_{x}^{2}\beta_{y}C_{4,s}^{(2)}\right)_{i}(2J_{x}2J_{y})\right]\right.\\ = \frac{q}{2\pi\rho_{0c}}\sum_{i}\left[\frac{3}{8}\left(4\beta_{y}^{2}C_{4,s}^{(0)}-2\beta_{y}\alpha_{y}C_{2,s}^{(1)}+\frac{2}{3}\beta_{y}^{2}C_{2,s}^{(2)}\right)_{i}(2J_{y})\right.\\ \left. -\frac{3}{4}\left(4\beta_{x}\beta_{y}C_{4,s}^{(0)}-\frac{1}{3}(\beta_{x}\alpha_{y}-\beta_{y}\alpha_{x})C_{2,s}^{(1)}\right)_{i}(2J_{x})\right.\\ \left. -\frac{5}{16}\left(6\beta_{y}^{2}C_{6,s}^{(0)}-\frac{3}{2}\beta_{y}^{2}\alpha_{y}C_{4,s}^{(1)}+\frac{9}{20}\beta_{y}^{2}C_{4,s}^{(2)}\right)_{i}(2J_{y})^{2}\right.\\ \left. -\frac{15}{16}\left(6\beta_{y}^{2}C_{6,s}^{(0)}-\frac{1}{5}\beta_{x}\left(\frac{\beta_{x}\alpha_{y}}{2}-3\beta_{y}\alpha_{y}\right)C_{4,s}^{(1)}-\frac{3}{20}\beta_{x}^{2}\beta_{y}C_{4,s}^{(2)}\right)_{i}(2J_{x})^{2}\right.\\ \left. +\frac{15}{8}\left(6\beta_{x}\beta_{y}C_{6,s}^{(0)}+\frac{1}{5}\beta_{y}\left(\frac{\beta_{y}\alpha_{x}}{2}-3\beta_{x}\alpha_{y}\right)C_{4,s}^{(1)}+\frac{3}{20}\beta_{x}\beta_{y}C_{4,s}^{(2)}\right)_{i}(2J_{x}2J_{y})\right]$$

Motivation 00	New Map 000000	Test on HL-LHC ●○○○○○○○	What about LHC?	Amplitude Beta-Beating	Conclusion OO	Bibliography O
Contents	;					

Creation of a New Transfer Map

Test on HL-LHC

- HL-LHC Optics and Models compared
- Impact of Model on Amplitude Detuning
- Impact of Model on Correctors strength
- Impact of Model on Dynamic Aperture

4 What about LHC?

A variation of the beta-beating with the Amplitude? (*Preliminary results*)

Motivation	New Map 000000	Test on HL-LHC	What about LHC?	Amplitude Beta-Beating	Conclusion OO	Bibliography O
HL-LHC	collision	Optics				

Why this optics?

- High luminosity Interaction Region (IR) in circular collider require very low β^* (15 cm).
 - \Rightarrow The beam is sensible to the non-linearities in the Final Focus magnet due to the high β -function.
- The CERN use superconductor magnet in order to have high gradient and large aperture for HL-LHC Inner Triplet.
 - ⇒ Long magnet with strong non-linearities in the extremity.
- The non-linear correctors in purple correct locally the non-linearities (IR by IR).

Motivation	New Map	Test on HL-LHC	What about LHC?	Amplitude Beta-Beating	Conclusion	Bibliography
		0000000				
Models	compared	4				

Models compared:

- HE (Hard Edge): 16 Drift and Kick of equal multipolar integrated strength.
- HE+Heads: Similar to HE but with a part of the total integrated strength in additional Kick in the extremity (Ref. [3]).
- Lie2: Nonlinear transfer map from Lie algebra (Ref. [4, 5, 6]). The extremities are modeled by computing the vector potential with dz = 2 cm.
 - ND0: Only pure harmonics in the Quadrupole.
 - ND6: with up to the 6^{th} derivative of the gradient.

The Lie2 model was developed at the CEA and is **implemented in SixTrack** (Ref. [7, 8]).

Definition of the Heads:

 $\{z \in \mathbb{R} : A_x(x, y, z) \neq 0 \text{ or } A_y(x, y, z) \neq 0, \forall x, y \in \mathbb{R}\}$

Motivation	New Map 000000	Test on HL-LHC ○○○●○○○○	What about LHC?	Amplitude Beta-Beating	Conclusion OO	Bibliography O
Direct Ar	nplitude [Detuning				

- 1st and 2nd order detuning well reproduced by analytic computation.
- The impact of the harmonics longitudinal distribution (only b₆ here) is clearly measurable.
- HE+heads is a good approximation of Lie2 map, but do not account for effects due to gradients derivatives.

 Motivation
 New Map
 Test on HL-LHC
 What about LHC?
 Amplitude Beta-Beating
 Conclusion
 Bibliography

 00
 000000
 0000000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Correctors strength (Octupole corrector)

- First and second derivative of the main quadrupole field provide a systematic shift in the integrated octupole corrector strength (K3L).
- The shift is ~4% (K3L) with respect to correctors specification (IPAC13 WEPEA048 Ref. [9]).

Correction procedure:

$$\begin{pmatrix} K_{(n-1),Left}L\\ K_{(n-1),Right}L \end{pmatrix} = \begin{pmatrix} \beta_{x,Left}^{n/2} & \beta_{x,Right}^{n/2}\\ \beta_{y,Left}^{n/2} & \beta_{y,Right}^{n/2} \end{pmatrix}^{-1} \sum_{s \in IP} b_{n,s}K_{r,s}L_s \begin{pmatrix} \beta_{x,s}^{n/2} & \beta_{y,s}^{n/2} &$$

14/26

 Motivation
 New Map
 Test on HL-LHC
 What about LHC?
 Amplitude Beta-Beating
 Conclusion
 Bibliography

 CO
 000000
 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <t

Correctors strength (Dodecapole corrector)

- The shift is ~13% (K5L) with respect to correctors specification (IPAC13 WEPEA048 Ref. [9]).
- HE+heads is a good approximation of the more accurate Lie2 calculation (...gradient derivatives more than 2nd have negligible impact...).

Correction procedure:

$$\begin{pmatrix} K_{(n-1),Left}L\\K_{(n-1),Right}L \end{pmatrix} = \begin{pmatrix} \beta_{x,Left}^{n/2} & \beta_{x,Right}^{n/2}\\ \beta_{y,Left}^{n/2} & \beta_{y,Right}^{n/2} \end{pmatrix}^{-1} \sum_{s \in IP} b_{n,s}K_{r,s}L_s \begin{pmatrix} \beta_{x,s}^{n/2} & \beta_{x,s}^{n/2} & \beta_{y,s}^{n/2} \end{pmatrix}$$

15/26

Motivation New Map lest on HL-LHC What about LHC? Amplitude Beta-Beating	Conclusion	Bibliography

- On Axis, the DA is relatively the same for all the model while off axis, the discrepancy can be up to 2*σ*.
- The improvement in DA due to the b₆ correction is Model dependent.
- Statistically, the difference between the model is up to 2σ (> 0.5 σ at 10⁵ turns M. Hayes 2003 Ref. [10]).
- Statistically, the correction seems more effective for the more precise model (Lie2).

Dynami	c aperture	e after 10 ⁴ rev	volutions			
00	000000	00000000	000	000	00	O
Motivation	Now Man	Tost on HL-LHC	What about LHC2	Amplitudo Rota-Roating	Conclusion	Ribliography

- On Axis, the DA is relatively the same for all the model while off axis, the discrepancy can be up to 2*σ*.
- The improvement in DA due to the b₆ correction is Model dependent.
- Statistically, the difference between the model is up to 2σ (> 0.5 σ at 10⁵ turns M. Hayes 2003 Ref. [10]).
- Statistically, the correction seems more effective for the more precise model (Lie2).

 Motivation
 New Map
 Test on HL-LHC
 What about LHC?
 Amplitude Beta-Beating
 Conclusion
 Bibliography

 OO
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Dynamic aperture vs number of revolutions

$$DA(N) = \frac{2}{\pi} \int_0^{\pi/2} r_s(\theta; N) \,\mathrm{d}\theta$$

- The impact of the model is more significant in the first 1000 turns.
- The improvement in DA due to the b₆ correction is Model dependent.
- Statistically, for the Lie2 Model, the spread is smaller with the b₆ correction.

Motivation	New Map	Test on HL-LHC	What about LHC?	Amplitude Beta-Beating	Conclusion	Bibliography
		0000000				

Dynamic aperture vs number of revolutions

$$DA(N) = \frac{2}{\pi} \int_0^{\pi/2} r_s(\theta; N) \,\mathrm{d}\theta$$

- The impact of the model is more significant in the first 1000 turns.
- The improvement in DA due to the b₆ correction is Model dependent.
- Statistically, for the Lie2 Model, the spread is smaller with the b₆ correction.

Motivation 00	New Map 000000	Test on HL-LHC	What about LHC?	Amplitude Beta-Beating	Conclusion OO	Bibliography O
Contents						

Creation of a New Transfer Map

Test on HL-LHC

What about LHC?

5 A variation of the beta-beating with the Amplitude? (Preliminary results)

Motivation New Map Test on HL-LHC What about LHC? Amplitude Beta-Beating Conclusion Bibliography OC OOOOOOO OOO OOO

A strong b_4 and b_6 in the IT quadrupole extremity.

LHCIRO45.HA67ana3.kdat 2:33:30 PM 01.5.9

T. PUGNAT Fringe fields: more relevant than the body?

Motivation 00	New Map 000000	Test on HL-LHC	What about LHC? ○○●	Amplitude Beta-Beating	Conclusion OO	Bibliography O
Correctors strength						

- The longitudinal distribution of b₄ in one family of the LHC Inner Triplet (Q1 and Q3) produces a small shift toward beam-based values for IR5, the inverse for IR1.
- Direct 2nd order detuning not observed up to now in LHC.
- The longitudinal distribution of b₆ in one family of the LHC Inner Triplet (Q1 and Q3) reduces significantly the required correctors strength.

Motivation 00	New Map 000000	Test on HL-LHC	What about LHC?	Amplitude Beta-Beating	Conclusion	Bibliography O
Contents						

Creation of a New Transfer Map

Test on HL-LHC

4 What about LHC?

5 A variation of the beta-beating with the Amplitude? (Preliminary results)

 Motivation
 New Map
 Test on HL-LHC
 What about LHC?
 Amplitude Beta-Beating
 Conclusion
 Bibliography

 oo
 oo
 oo
 oo
 oo
 oo
 oo
 oo

Sensibility of Amplitude Beta-Beating (Preliminary results)

 Resonance Driving Terms (RDTs) acting on the Spectral Ray H(-1,0) and/or V(0,-1) cause a variation of the measured β-function.

We call it Direct and Cross Amplitude Beta-Beating (ABB).

Octupolar RDTs:

 $f_{3100}, f_{2011}, f_{1120}$ and f_{0031}

Dodecapolar RDTs:

 $f_{4200}, f_{3111}, f_{2022}, f_{2220}, f_{1131}$ and f_{0042}

- In HL-LHC simulation, an ABB of $\sim 1-2\%$ appears at an amplitude of $0.02\,\mu m$.
- The Direct and Cross Amplitude Beta-Beating seems also sensible to the harmonics longitudinal distribution.

Simulation for HL-LHC with HE (b4 errors only):

Simulation for HL-LHC with HE (b6 errors only):

Fringe fields: more relevant than the body?

22 / 26

 Motivation
 New Map
 Test on HL-LHC
 What about LHC?
 Amplitude Beta-Beating
 Conclusion
 Bibliography

 oo
 oo
 oo
 oo
 oo
 oo
 oo
 oo

Sensibility of Amplitude Beta-Beating (Preliminary results)

 Resonance Driving Terms (RDTs) acting on the Spectral Ray H(-1,0) and/or V(0,-1) cause a variation of the measured β-function.

We call it Direct and Cross Amplitude Beta-Beating (ABB).

Octupolar RDTs:

 $f_{3100}, f_{2011}, f_{1120}$ and f_{0031}

Dodecapolar RDTs:

 $f_{4200}, f_{3111}, f_{2022}, f_{2220}, f_{1131}$ and f_{0042}

- In HL-LHC simulation, an ABB of ~ 1 - 2% appears at an amplitude of 0.02 µm.
- The Direct and Cross Amplitude Beta-Beating seems also sensible to the harmonics longitudinal distribution.

Simulation for HL-LHC with HE (b4 errors only):

Simulation for HL-LHC with HE+Head (b6 errors only):

Fringe fields: more relevant than the body?

22 / 26

Motivation New Map Test on HL-LHC What about LHC? Amplitude Beta-Beating Bibliography 000 Generate a strong Amplitude Beta-Beating with octupole correctors (Preliminary results)

Measure on LHC (b4 not corrected):

The variation of the ABB measured on the LHC is more compatible with noise than with actual ABB.

Experiment proposal on the LHC(?)

- Some configuration are analysed to generate an ABB of $\sim 10\%$ at an amplitude of 0.01 μ m.
- ۲

10000 15000 20000 25000

5000

20

10

Motivation New Map occosion Test on HL-LHC cocosion What about LHC? cocosion Amplitude Beta-Beating coc Conclusion coc Bibliography coc Generate a strong Amplitude Beta-Beating with octupole correctors (Preliminary results) Amplitude Beta-Beating Conclusion Bibliography coc

Measure on LHC (b4 not corrected):

• The variation of the ABB measured on the LHC is more compatible with noise than with actual ABB.

Experiment proposal on the LHC(?)

- Some configuration are analysed to generate an ABB of ~ 10% at an amplitude of 0.01 μm.
- Analytical prediction of ABB: work in progress.

20

duy 10

[%] from .

0^{.x}θ^{/x}θ

-20

-30

Motivation	New Map 000000	Test on HL-LHC	What about LHC?	Amplitude Beta-Beating	Conclusion ●O	Bibliography O
Contents						

Creation of a New Transfer Map

3 Test on HL-LHC

What about LHC?

6 A variation of the beta-beating with the Amplitude? (Preliminary results)

Motivation	New Map	Test on HL-LHC	What about LHC?	Amplitude Beta-Beating	Conclusion	Bibliography
					00	
Conclus	sion					

Analytical expressions and a new transfer map have been developed in order to take into consideration the impact of the 3D-field on beam-based observable.

(Amplitude Detuning, Correctors strength, Dynamic Aperture, Amplitude β -Beating)

For HL-LHC:

- The main field derivatives have small impact on b₄ correction (~4%).
- The impact of the longitudinal distribution of b₆ can be well approximated by splitting the magnet in 2 Heads + Body and it results in a shift of ~13% for HL-LHC optics.
- Accurate measurements of the longitudinal harmonics are important when comparing accelerators models with beam based values. In particular, there is no ROXIE model is available for the not allowed ones (b₃, b₄, b₅, ... for quad).
- The improvement in the minimal DA is model dependent.

For LHC:

- The b₄ longitudinal distribution (in Q1 and Q3) produces a small shift with respect to WISE integrated value which increases the puzzle of octupole correction in LHC.
- The b₆ longitudinal distribution (in Q1 and Q3) has a big impact on the dodecapole correctors strength. But is hard to predict a precise value since there are no information of the b₆ longitudinal distribution inside Q2.
- The present Amplitude β-Beating due to higher order harmonics is in the percent level. The measurement is hidden in the noise. But some LHC configuration can provide an Amplitude β-Beating of ~ 10% at 0.01 µm

So YES, the harmonics longitudinal distribution has an impact on beam based quantities, but is more relevant when the actual collider configuration is known than in the design phase.

00	on New Map 000000	lest on HL-LHC 00000000	What about LHC?	Amplitude Beta-Beating	Conclusion OO	Bibliography	
Bibl	iography						
[1]	Direct amplitude detur dipole S. White, E. H Maclea in Phys. Rev. STAB, vo 2013.	ning measurement n, and R. Tomas, pl. 16, pp. 046502,	<i>with ac</i> [6] Jul.	High order time integrators charged particle motion in A. Simona et al., Comp. Phys. Comm., vol. 2 2019.	s for the simulation magnetic quadrup 239, pp. 33-52, Fel	of oles, b.	
[2]	Explicit symplectic inte static magnetic field Y. K. Wu, E. Forest an in <i>Phys. Rev. E.</i> vol. 66	egrator for s-dependent d D. S. Robin, 8. pp. 046502, Oct.	dent [7] 2003. [8]	SixTrack, http://sixtrack.web. SixTrack version 5: Status	.cern.ch/SixTr <i>and new developn</i>	ack n ents,	
[3]	Dynamic aperture stud Y. Cai et al.,	dies for HL-LHC V1	<i>1.0</i> ,	R. De Maria <i>et al</i> , in <i>Proc. IPAC'19</i> , Melbourne, Australia, May 2019, paper WEPTS043, pp. 3200-3203			
[4]	Fringe Field Modeling LHC Large Aperture q B. Dalena et al., in Proc. IPAC'14, Dres paper TUPRO002, pp.	for the High Lumin uadrupole, den, Germany, Jur 993-996.	[9] <i>osity</i> ne 2014,	Specification of a system of Triplets and separation dip upgrades, M. Giovannozzi, S. D. Farti in <i>Proc. IPAC'13</i> , Shangha paper WEPEA048, pp. 326	of correctors for the oles of the LHC oukh and R. De Ma il, China, Jun. 2013 612-2614	aria, 3,	
[5]	Accurate and Efficient Electromagnetic Quad T. Pugnat et al., in Proc. IPAC'18, Vano paper THPAK004, pp.	<i>Tracking in Irupoles,</i> couver, Canada, Ju 3207-3210.	[10] ne 2014,	The influence of Computer Aperture Results Using Si M. Hayes, E. McIntosh and in <i>LHC Project Note 309</i> , C Jan. 2003	r Errors on Dynami xTrack, J F. Schmidt, Geneva, Switzerlan	ic nd,	