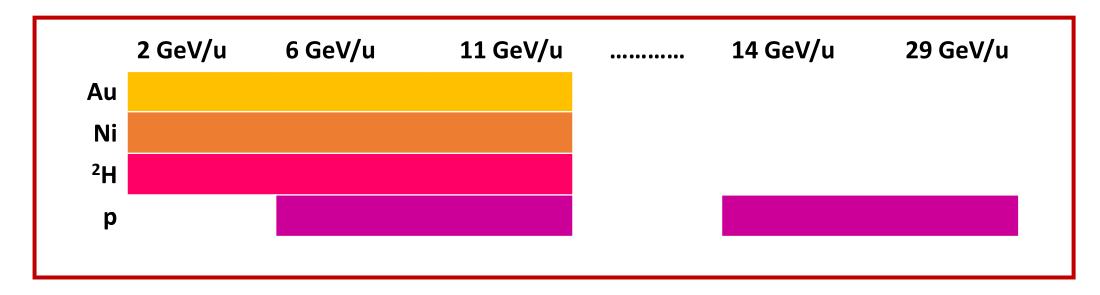
Mass production APR20

Anna Senger

Open questions

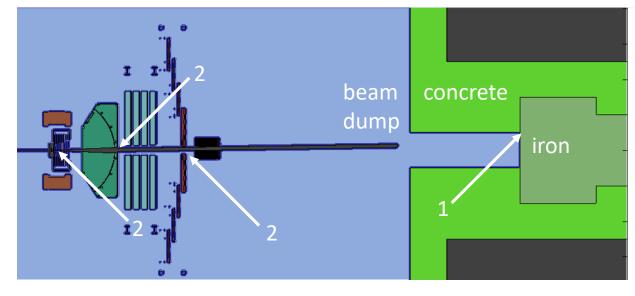

- Beam
 - energy
 - beam particle (ions, proton)
- Magnetic field scaling

SIS100 possibilities for CBM Slow extraction

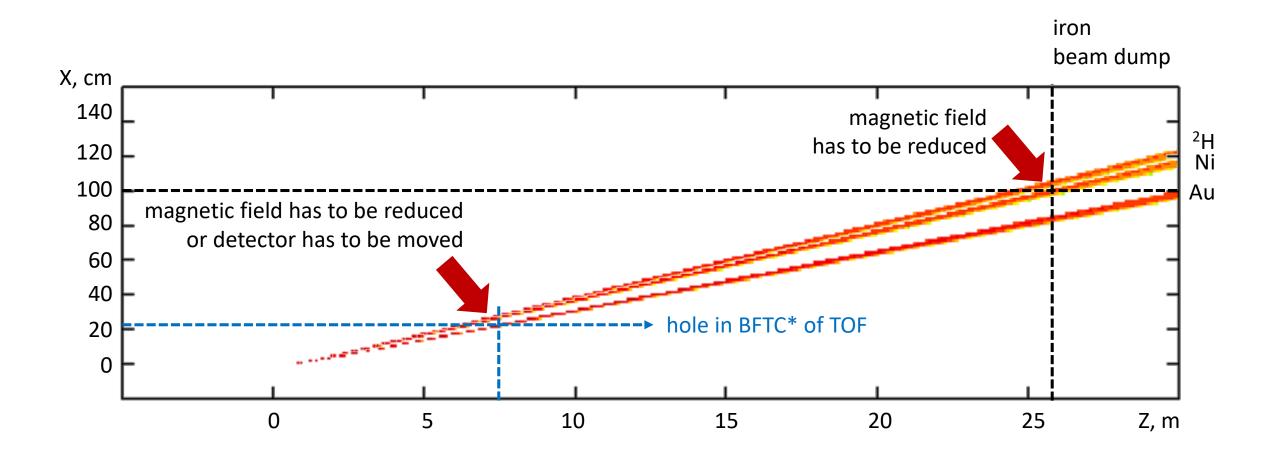
FAIR Operation Modes. Reference Modes for the Modularized Start Version (MSV).

- ion beams (Sabrina Appel and Oliver Boine-Frankenheim)
 - 2-11 GeV/u
 - for low beam energies at SIS100, below 4GeV/u, the beam emittance will be worse than requested
 - low extraction is not available near gamma transition, banned energy is 11-14
 GeV/u
- p beam (David Ondreka, HIC4FAIR Workshop No 2, 2016)
 - -6 ... 11 GeV/u and 14 ... 29 GeV/u appear to be safe
 - energies below 5 GeV/u will probably not work at all
 - difficulties expected around transition for 11 ... 14 GeV/u

Physics program versus beam properties


- LMVM
 - ion beam 2-11 AGeV
 - p beam (?)
- J/ψ:
 - ion beam 6*(?)-11 AGeV
 - p beam 14(?)-29 GeV

- LMVM
 - Au+Au: 2 or 4, 6, 11 AGeV
- J/ψ:
 - Au+Au 11 AGeV
 - p+Au 29 GeV


^{*}J. Steinheimer, A. Botvina, M. Bleicher, arXiv:1605.03439v1

Magnetic field scaling study

- Magnetic field (MF) scaling:
 - 1. radiation point of view (to fit beam dump)
 - for Au beam: 2 A GeV 60 % MF, higher energy 100% MF
 - for lighter ion beams has to be calculated
 - 2. <u>detector geometry point of view</u> (to fit unmoveable part of beam pipe, to fit inner hole in the detectors or move detectors according beam deflection)
 - cylindrical beam pipe R=2 cm in Z=20÷50 cm from target
 - conical beam pipe R=16.16 cm in Z=3.7 m from target
 - TOF hole in BFTC* ±22 cm in X direction (Z≈7 m from target)
 - 3. physics point of view
 - PSD MF scaling in TDR

Au@4 AGeV, 100% magnetic field

Magnetic field scaling with unmoveable beam pipe

Magnetic field scaling (%)					
beam	2 A GeV	4 A GeV	6 A GeV	8 A GeV	11 A GeV
Au	23	41	58	74	100
Ni	21	36	51	66	89
² H	19	33	46	60	80

if beam pipe position will be fixed for 8 AGeV Au beam by 100% MF, than 11 AGeV Au beam will be outside of beam pipe

Simulation program

- Physics simulations
 - LMVM
 - Au+Au: 2 or 4, 6, 11 AGeV
 - J/ψ
 - Au+Au 11 AGeV
 - p+Au 29 GeV
- <u>Technical simulations</u>: magnetic field scaling study
 - scaling for low energy of Au beam
 - scaling for light ions:
 - to have the same acceptance as for Au beam with the same energy?
 - to have maximal possible magnetic field? (better STS track reconstruction and mass resolution)

we can use only one signal (ω ?) and low statistics for background (10 6 central events)