Capture laser-accelerated proton beams: Experiment and Simulations

TECHNISCHE UNIVERSITÄT DARMSTADT

Frank Nürnberg

Phelix laser GSI

Au 26 µm, 72 J @ 500 fs

Pulsed solenoid FZR 12 kV, 9.32 kA 7,51 T

Plasma Simulation Code

0.037

0.032

0.023

0.018

0.014

0.005

 $E_0 = 26.00 TV/m$

 $E_{x,max} = 1.128 TV/m$

1.40

- General understanding of ion acceleration
 mechanisms
- **Studies** of different absorption mechanisms: Vacuum-Heating vs. ponderomotive acceleration, impact on electron and ion spectrum
- **Complex target** geometries: divergence reduction

• Why PSC:

- of of the most efficient and powerful PIC codes
- Fortran90, MPI (up to 360 CPUs)
- Open source, collaboration with H. Ruhl
- source code well documented and commented, easy implementation of self-developed modules
- Monte-Carlo collisions module implemented
- empiric models for field and collision ionisation implemented

alternative:

- EPOCH openSource PIC Project: <u>http://ccpforge.cse.rl.ac.uk/projects/epoch/</u>
- Promissing futher development of PSC
- ToDo:
 - Output of PSC as input for Warp transport simulations

 $t = 00674.39 \, fs$

 $I_0 = 9.95 \cdot 10^{19} W/cm$

Jum

2

.

Warp suite of simulation codes

- Developed to study high current ion beams (heavy-ion driven ICF).
- High current beams necessary for a driver
 - \rightarrow **space-charge forces** dominate over thermal forces (and mag. self-fields at low v). \rightarrow analysis of beam dynamics needs to include the **electrostatic self-fields** of the beam.
- Warp combines the **PIC** technique (Lorentz equation of motion to advance macro-particles (simulation particles) in time) with a description of the accelerator "**lattice**" of elements. The effects of the **space-charge** is included by a global solution of **Poisson's equation**, giving the electrostatic potential, at each timestep.

Each time step goes through the following pattern:

- 1.) Charge of macro-particles is deposited onto mesh.
- 2.) Charge density is calculated via trilinear interpolation of macro-particles onto mesh.
- 3.) Electrostatic potential is calculated from charge density by solving Poisson's equation.
- 4.) Electric fields are interpolated from mesh to macro-particles.
- 5.) Velocities and positions of macro-particles are advanced.
- Macro-particles are advanced in time using a combination of the "leap frog" and "isochronous leap frog" methods.

Setup: experiment and simulation

TECHNISCHE

UNIVERSITÄT DARMSTADT

BERKELEY L

08/06/2010 | Workshop: Capture laser-accelerated protons | Frank Nürnberg | 4

RCF imaging spectroscopy F. Nürnberg *et al.*, Rev. Sci. Instrum. **80**, 033301 (2009)

- Envelope divergence
- Transverse
 emittance
- spectrum

TECHNISCHE UNIVERSITÄT

DARMSTADT

Figure 3: Proton beam parameters of the Phelix shot 18 for the Warp particle loader: experimental data (•) and polynomial fits (—) of the source size (a), the envelope divergence (b) and the angle error for the transverse beam emittance (c).

Electrons & Solenoidal magnetic field

Co-moving electrons:

- V_p=V_e
- $[3.42 \text{ MeV}, 23.04 \text{ MeV}]_{p} \rightarrow [1.87 \text{ keV}, 12.54 \text{ keV}]_{e}$
- same beam parameters as protons, but different initial x/y-positions to avoid same emission point

Quasi-neutral beam expansion

P. Mora, "Plasma expansion into vacuum", Phys. Rev. Lett. 90, 185002 (2003)

- ightarrow no cold electron background
- \rightarrow no hot electrons

 \rightarrow absorbing boundary condition at z=0

Solenoidal magneticfield

$$B_{0,max} = 7.51 \text{ T} - B_{r,max} = \pm 3.11 \text{ T}$$

B field at target position:

 $B_{z,max} = 105 \text{ mT} - B_{r,max} = 0.25 \text{ mT}$

Plasma and simulation criteria

- Resolving **plasma frequency**: $\omega_p \cdot \Delta t < 1$
 - \rightarrow Volume source because of $\mathrm{n_e}$
 - $\rightarrow \Delta t = 75$ fs (680 steps = 51 ps), $\Delta t = 1$ ps (21000 steps)
- Courant criterion:
 - $\rightarrow \Delta t$ = 75 fs: $\Delta s(E_{p,max})$ = 5 µm, $\Delta s(E_e=300 \text{ keV})$ = 17 µm $\rightarrow \Delta t$ = 1 ps: $\Delta s(E_{p,max})$ = 65 µm , $\Delta s(E_e=300 \text{ keV})$ = 232 µm

Debye length

- \rightarrow grid
- \rightarrow convergence check:
 - 1000/500/250/100 µm
- Warp RZ with absorbing/Dirichlet boundary conditions

Comparison Experiment & Simulation

Film size: 2.5 inch x 2.5 inch Gafchromic radiochromic film type HD-810

08/06/2010 | Workshop: Capture laser-accelerated protons | Frank Nürnberg | 8

Space-charge effect

Field solver off

Field solver on

08/06/2010 | Workshop: Capture laser-accelerated protons | Frank Nürnberg | 9

Comparison Experiment & Simulation

08/06/2010 | Workshop: Capture laser-accelerated protons | Frank Nürnberg | 10

Comparison Experiment & Simulation

Magnetic field effect on electrons

TECHNISCHE

UNIVERSITÄT DARMSTADT

Magnetic field effect on protons

TECHNISCHE

UNIVERSITÄT DARMSTADT

Collimation & Focussing

TECHNISCHE UNIVERSITÄT DARMSTADT

08/06/2010 | Workshop: Capture laser-accelerated protons | Frank Nürnberg | 14

Conclusion & Outlook

- Warp modified for quasi-neutral beam expansion
- Magnetic field effect -> space-charge effect
- Comparison experiment simulation
- Collimation: 2.99 x 10⁹ p+ (ΔE = 1 MeV)
- Focussing: 8.42 x 10⁹ p+ (ΔE = 200 keV)
- Source modifications
- PSC output as Warp input
- Stronger effect: solenoid abberations space-charge
- Optimization experiment

