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Capture laser-accelerated
proton beams: 
Experiment and Simulations

Frank Nürnberg
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7,51 T
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Plasma Simulation Code

 General understanding of ion acceleration
mechanisms

 Studies of different absorption mechanisms: 
Vacuum-Heating vs. ponderomotive acceleration, 
impact on electron and ion spectrum

 Complex target geometries: divergence reduction

 Why PSC: 

 of of the most efficient and powerful PIC codes

 Fortran90, MPI (up to 360 CPUs)

 Open source, collaboration with H. Ruhl

 source code well documented and commented, easy 
implementation of self-developed modules

 Monte-Carlo collisions module implemented

 empiric models for field and collision ionisation
implemented

 alternative: 

 EPOCH openSource PIC Project: 
http://ccpforge.cse.rl.ac.uk/projects/epoch/

 Promissing futher developement of PSC 

 ToDo: 

 Output of PSC as input for Warp transport simulations
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http://ccpforge.cse.rl.ac.uk/projects/epoch/
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Warp suite of simulation codes

 Developed to study high current ion beams (heavy-ion driven ICF). 

 High current beams necessary for a driver 
→ space-charge forces dominate over thermal forces (and mag. self-fields at low v). 
→ analysis of beam dynamics needs to include the electrostatic self-fields of the beam. 

 Warp combines the PIC technique (Lorentz equation of motion to advance macro-particles 
(simulation particles) in time) with a description of the accelerator "lattice" of elements. 
The effects of the space-charge is included by a global solution of Poisson's equation, 
giving the electrostatic potential, at each timestep. 

Each time step goes through the following pattern:

1.) Charge of macro-particles is deposited onto mesh. 

2.) Charge density is calculated via trilinear interpolation of macro-particles onto mesh. 

3.) Electrostatic potential is calculated from charge density by solving Poisson's equation.

4.) Electric fields are interpolated from mesh to macro-particles. 

5.) Velocities and positions of macro-particles are advanced. 

 Macro-particles are advanced in time using a combination of the "leap frog" and 
"isochronous leap frog" methods.
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Setup: experiment and simulation



508/06/2010  |  Workshop: Capture laser-accelerated protons |  Frank Nürnberg  | 

RCF imaging spectroscopy
F. Nürnberg et al., Rev. Sci. Instrum. 80, 033301 (2009) 

• Source size

• Envelope

divergence

• Transverse 

emittance

• spectrum
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Electrons &
Solenoidal magnetic field

Co-moving electrons: 

• vp=ve

• [3.42 MeV, 23.04 MeV] p →   [1.87 keV, 12.54 keV] e

• same beam parameters as protons, but different inital x/y-positions to avoid

same emission point

Quasi-neutral beam expansion
P. Mora, „Plasma expansion into vacuum“, Phys. Rev. Lett. 90, 185002 (2003)

→ no cold electron background
→ no hot electrons
→ absorbing boundary condition at z=0

Solenoidal magneticfield

B0,max = 7.51 T  - Br,max = ±3.11 T

B field at target position:
Bz,max = 105 mT - Br,max = 0.25 mT
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Plasma and simulation criteria

 Resolving plasma frequency: ωp · Δt < 1 
→ Volume source because of ne 

→ Δt = 75 fs (680 steps = 51 ps), Δt = 1 ps (21000 steps)

 Courant criterion: 
→ Δt = 75 fs: Δs(Ep,max) = 5 µm, Δs(Ee=300 keV) = 17 µm 
→ Δt = 1 ps: Δs(Ep,max) = 65 µm , Δs(Ee=300 keV) = 232 µm 

 Debye length
→ grid
→ convergence check: 

1000/500/250/100 µm

 Warp RZ with absorbing/Dirichlet
boundary conditions
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Comparison
Experiment & Simulation

Film size: 2.5 inch x 2.5 inch

Gafchromic radiochromic film type HD-810
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Space-charge effect

Field solver off Field solver on
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Comparison
Experiment & Simulation
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Comparison
Experiment & Simulation

Radial line-outs experiment Radial line-outs simulations
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Magnetic field effect on electrons

5.2 keV

Casino simulation: 2 MeV electron
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Magnetic field effect on protons
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Collimation & Focussing

Initial particle

number:

1.85 x 1012

protons

Overall proton

loss: 74.8%

Collimation

Transmission 

18%

→ 2.99 x 109 p+

(ΔE = 1 MeV)

Focussing

Transmission 

18.3%
→ 8.42 x 109 p+ 

(ΔE = 200 keV)
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Conclusion & Outlook

Warp modified for quasi-neutral beam expansion

Magnetic field effect -> space-charge effect

 Comparison experiment – simulation

 Collimation: 2.99 x 109 p+ (ΔE = 1 MeV)

 Focussing: 8.42 x 109 p+ (ΔE = 200 keV)

 Source modifications

 PSC output as Warp input

 Stronger effect: solenoid abberations – space-charge

 Optimization experiment
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