

Slow Extraction from SIS-100 affected by Space Charge

Stefan Sorge

GSI Darmstadt

Introduction

Slow extraction from SIS-100, WP: $\nu_x=17.3,\ \nu_y=17.8, \delta=0$

- Slow extraction based on excitation of 3rd order resonance due to sextupoles
- Formation of stable phase space area
- Particles leave this area along separatrices

- Two open topics:
 - Optimisation of SIS-100 sextupole settings to reduce particle loss at blade
 of Electro-Static (ES) Septum
 - Influence of Space charge effects
- Focus on Space charge effects
 - Possible sources in SIS-100: high intensity ion beams, electron clouds
 - Space charge force is non-linear
 - * Shift and spread in betatron tune
 - * Tune shift of a particle can change

GSI Parameters

)	C		
(1	rcii	mfe	ron	CO
	ııcu		ICII	C

Reference ion

Time structure assumed here

Number of ions per pulse

Injection energy, E_{inj}

Injection transverse emittance (2σ) , $\epsilon_h imes \epsilon_v$

Energy range

Horizontal emittance (2σ)

Vertical emittance (2σ)

Final RMS momentum spread

1083.6 m

Coasting beam

 $5 \cdot 10^{11}$

200 MeV/u

 (35×15) mm mrad

 $(0.4 - 2.7) \,\, \mathrm{GeV/u}$

(24 - 6.4) mm mrad

(10 - 2.7) mm mrad

 10^{-3}

Laslett tune shift

Analytic formula for coasting Gaussian beam

Start from
1
 $\Delta
u_{sc,z} = rac{N_p r_0}{2\pi eta^2 \gamma^3 \sqrt{\epsilon_z} \left(\sqrt{\epsilon_x} + \epsilon_y
ight)} \;, \quad z=x,y$

- ullet Formula written with particle number N_p and for different emittances
- ullet $\epsilon_z = \sigma_z^2/eta_z$ transverse RMS emittance
- $r_0 = \frac{q^2}{4\pi\epsilon_0 m_0 c^2}$ particle radius
- β , γ relativistic factors

Small energy → large tune shift and emittance: influence of further non-linearities

¹ A. Hofmann, CERN, "Tune Shifts from Self Fields and Images", p. 336

Status

- Thin lens tracking using MAD-X
- Introduce frozen space charge by beambeam element:
 - Locate beambeam elements at equidistant positions around the ring
 - Varied number of beambeam kicks between 48 and 180
 - Transverse charge distribution with Gaussian shape, RMS width given by beta function and emittance
 - 4D simulation, i.e dependence only on transverse coordinates

Insertion of the beambeam elements (V. Kapin)

- Create thin lens tracking (MAD-X)
- Generate Twiss table, write it in file (MAD-X)
- Apply small auxiliary C programme to read elements and their parameters from Twiss file, to put marker elements in between, and to write modified lattice sequence in a sequence file which can be read by MAD-X
- Use new lattice in MAD-X and generate new Twiss file
- Apply small auxiliary C programme to replace marker elements by beambeam elements and to write modified lattice into sequence file
- Use sequence with beambeam elements in MAD-X

Matching beambeam elements

- Read location s of a beambeam element and the corresponding beta function
 from Twiss file
- Calculate parameter width

width
$$=\sqrt{eta(s)\epsilon_{rms}}$$

with

$$\epsilon_{rms} = \epsilon(2\sigma)/4$$
.

• Every beambeam element gets particle number divided by beambeam number

Horizontal Laslett tune shift, analytic formula vs. MAD simulation

- Simulated tune shift determined using dynap module in MAD-X
- Very good agreement also in case of vertical tune shift
- Results do not depend on number of beambeam elements

Tune spread for $E=400~{
m MeV/u}$, WP: $\nu_x=17.3,~\nu_y=17.8$

- Tune spread calculated with dynap module in MAD-X
- ullet Sextupoles to excite 3rd order resonance at $u_x=17.33333$ are on
- Space charge moves tune further away
 from resonance tune
 - no excited resonance is crossed
 - no significant influence
- Possibly resonance excitation due to magnet imperfections

Tune spread for $E=400~{ m MeV/u}$, WP: $u_x=17.35,~ u_y=17.8$

- Tune spread calculated with dynap module in MAD-X
- ullet Sextupoles to excite 3rd order resonance at $u_x=17.33333$ are on
- WP is artificially chosen to generate resonance crossing
 - → horizontal tune above resonance tune not proper for slow extraction
- Possible scenario if electron clouds are present

- Focused only on space charge of the ion beam
- If resulting tune spread does not cross excited resonance self field does not affect beam
- Under considered conditions, tune spread is too small to cross excited resonance and, in addition, space charge of the beam moves tune further away from 3rd order resonance \rightarrow on the first view no significant influence
- Possibly change of situation due to
 - Magnet imperfections leading to excitation of further resonances
 - Electron clouds because tune is moved towards 3rd order resonance