Off-line single-atom gas chromatographic adsorption studies of bismuth

Dominik Dietzel^{1,2}, Alexander Yakushev², Christoph E. Düllmann^{1,2,3}, Jörg Krier², Jadambaa Khuyagbaatar², Egon Jäger²

¹ Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

² GSI Helmholtzzentrum für Schwerionenforschung GmbH Darmstadt, 64291

Darmstadt, Germany

³ Helmholtz-Institut Mainz, 55099 Mainz, Germany

REC SHE SEP @ CHEM

IAJUA International Cooperation on the TASCA Recoil Separator for Transactinide Chemistry and Physics

Motivation: Preparation for Mc adsorption experiments

Characterizing new miniCOMPACT detection system

Theoretical predictions about formation of oxides in earlier talk by Miroslav Iliaš

[1] V. Pershina, M. Ilias, A. Yakushev, Inorg. Chem. (https://doi.org/10.1021/acs.inorgchem.1c01076)

Experimental setup

Experimental

- Measurements with He, Ar, and O_2 as carrier gases
 - Different stochiometries in gas mixtures
 - 0.5 1 bar pressure
 - 1-4 L/min carrier gas flow
- Monte-Carlo-Simulations for estimation of the lower limit value for $\Delta H_{ads.}$
- Estimation of the efficiency of the system for extraction of Pb/Bi from RTC into miniCOMPACT

miniCOMPACT: detector and gas chromatograph

CHEEN

- 3 L/min helium, 1 bar
- opened ²²⁷Ac source
- Collecting and counting for 87 min

25.06.2021

- ²¹¹Bi is fully adsorbed in the detector (>99%)
- No significant differences in argon and oxygen → not sensitive to oxides

Monte-Carlo-Simulation of ²¹¹Bi distribution

[3] I. Zvara, Radiochimica Acta 1985, 38.

Precursor effect

Results

Helium:

- Comparison with Monte-Carlo-Simulation \rightarrow Limit for $-\Delta H_{ads}$
- With best fit for 3-15 cm: Limit for –∆H_{ads.} ≈ 75 kJ/mol
- lower limit for pure diffusion controlled adsorption

Estimation of efficiency

Outlook to ²⁸⁸Mc adsorption experiments

- Moscovium should adsorb mainly in the first part of the column
- If Mc leaves the miniCOMPACT $\rightarrow -\Delta H_{ads}$ is lower than 58 kJ/mol
- If $-\Delta H_{ads}$ is higher \rightarrow not sensitive

[1] V. Pershina, M. Ilias, A. Yakushev, Inorg. Chem., in print.[4] Yu. Ts. Oganessian, V. K. Utyonkov, 2015 Rep. Prog. Phys. 78 036301.

Summary

- 1. New setup with miniCOMPACT detector directly connected to RTC
- 2. ²²⁷Ac-chain with ²¹¹Bi as daughter of ²¹¹Pb \rightarrow precursor effect
- 3. Extraction of non-volatile elements from RTC possible
- 4. Overall efficiency for the extraction of Pb/Bi from the RTC $\approx 39\%$
- Bismuth is reactive and is deposited on SiO₂ in a diffusion-controlled manner at room temperature. The lower limit for–∆H_{ads} is ≈ 75 kJ / mol

READY FOR MOSCOVIUM EXPERIMENTS

Acknowledgements: Brigitta Schausten, Valeria Pershina, Miroslav Ilias

TASCA International Cooperation on the TASCA Recoil Separator for Transactinide Chemistry and Physics

Thank you all for your attention!

