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Current state of liquid-phase experiments:
Categories
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 Motivation

 Design of the Vacuum to Liquid Transfer Chamber (VLTC)

 SRIM simulations

 Fission fragment experiments

 Coupling to ion exchanging alpha detectors

 Conclusion
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[1] Y. Nagame, J. V. Kratz, and M. Schädel, “Chemical studies of elements with Z ≥ 104 in liquid phase,” Nuclear Physics A, vol. 944, pp. 614–639, 2015. 
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 Discontinuous (cyclic) operating systems
e.g. ARCA, AIDA or ALOHA...

• Chromatographic experiments

• α and SF detection with Si detectors

 Continuous operating systems e.g. SISAK

• Liquid-liquid extraction experiments

• α, β and SF detection with liquid scintillation

 With this systems, the chemical properties
of the first three super heavy elements in
aq. solution were studied

• Where 265Sg (t1/2 14.4 𝑠𝑠 −2.5
+3.7 𝑠𝑠 ) could only be

investigated indirectly
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Experimental setups can be categorized in:

[1] Y. Nagame, J. V. Kratz, and M. Schädel, “Chemical studies of elements with Z ≥ 104 in liquid phase,” Nuclear Physics A, vol. 944, pp. 614–639, 2015. 
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Continuously, 
~ 10 s residence time



State of liquid-phase chemistry experiments:
Optimizations
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1. Stopping of evaporation residues before
separation

• All nuclear reaction products are transported to
the chemical experiment

• High selectivity in the chemical experiment is
required in order to detect decays of SHE

• After successful separation of the nuclear by-
products from the SHEs under investigation,
α decay can be clearly detected by high-
resolution α spectrometry with Si detectors…
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Chemical 
experiment

Further, experiments can be categorized in:
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2. Stopping of evaporation residue after
separation

• Unwanted nuclear reaction products and
the (unreacted) primary beam are filtered
physically…

• Coupling a chemical experiment with a
physical pre-separator simplifies the
chemical experiments & reduces the
spectral background

 Pioneer experiment at the Berkeley
Gas-filled Separator (BGS) coupled
through a gas jet system with the
SISAK system

• Successful experiments with the 257Rf
(t1/2 4.4 𝑠𝑠 −0.5

+0.6 𝑠𝑠) were possible due to this
coupling
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SISAK

Further, experiments can be categorized in:

Gas jet



The Vacuum to Liquid Transfer Chamber
(VLTC) 

New developments
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ExperimentGas jet

Physical 
preseparator Solution in
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Experiment
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 Instead of further optimizing the
multi-stage process:

1. Thermalizing the EVR in gas

2. Gas jet transport of the aerosols

3. Phase transfer of the SHE to the aqeous
phase

4. Subsequent chemical experiment

 A direct coupling between the low
pressure side (“vacuum”) of a
physical pre-separator and the
liquid phase of a chemical
experiment was designed

 Resulting in the Vacuum to Liquid
Transfer Chamber (VLTC)



The Vacuum to Liquid Transfer Chamber
(VLTC) 

New developments
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 Standard flange

• Window size: 1270 mm²

 Grid
• 80 % ion transparency

 Metal frame
• Covered with 3.3 µm or 6.0 µm thin Mylar foil

 Liquid phase chamber
• 3D printed (PMMA-like)

• Standard ¼-28 fitting connection

• Sealing ring between Mylar Foil and Chamber

• Chamber depth: 500 µm

• Total volume 635.5 µl

Inlet

Outlet



SRIM Simulation applicability for
SHE experiments

Proof of concept: 1. Simulations
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 In advance, simulations were carried
out with SRIM on the feasibility of a
VLTC…

• …using as example experiments with
289Fl at TASCA [1].

• The aim was to assess the transfer of an
EVR directly after TASCA into the
aqueous phase with the aid of a VLTC.

 Three cases were considered:

Case I: Longest Fl range

Case II: Average Fl range

Case III: Shortest Fl range

244Pu(48Ca,3n)289Fl

Solution in

Solution in

To the 
experimentW

at
er

TASCA

[1] A. Såmark-Roth, et al., “Spectroscopy along flerovium decay chains: Discovery of Ds 280 and an excited state in Cn 282,” Phy. Rev.  Let., vol. 126, no. 3, p. 032503, 2021. 



SRIM Simulation applicability for
SHE experiments
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 SRIM calculates only the ranges of
elements up to uranium (Z = 92)

• Ranges were calculated for 289Z nuclides
(Z = 20 - 92) in each material and
extrapolated to 289Fl.

• If 289Fl still has kinetic energy when it
leaves the Mylar foil, it is stopped in the
liquid phase, completely.

 In a VLTC with…

• …a 3.3 µm ± 0.1 µm thin Mylar foil 289Fl
enters the liquid phase in all cases

• …a 6.0 µm ± 0.2 µm thin Mylar foil, 289Fl
enters the liquid phase in case I and II

 Experimental proof: literature data
shows, that SHE can be transferred
through 6 µm Mylar foil

Case III: 

Shortest Fl range

Case I: 

Longest Fl range

Proof of concept: 1. Simulations



Residence time

Residence time studies

9TASCA 21 | Direct coupling of liquid-phase chemical setups | 23.07.2021 | Dominik Krupp, et al.

 Mean residence time (MRT) in the liquid phase
chamber was determined with 68Ga in 0.1 M HCl

• Vacuum side: 100 mbar and equipped with a shielded
NaI(Tl) detector

• The 68Ga tracer solution was delivered through the liquid
phase chamber with a peristaltic pump at 100 ml/min and
50 ml/min respectively

 50 mL/min

50 %  14.7 s ± 1.5 s

80 %  21.5 s ± 3.0 s

 100 mL/min

50 %  7.7 s ± 1.0 s

80 %  12.0 s ± 2.5 s

 50 % were eluted in ~ 12.5 ml



Proof of concept tests

 250/252Cf fission source

• Emission of light mass fragments (~ 104 u)
with Ekin ~ 105 MeV

• and heavy mass fragments (~ 140 u) with
Ekin ~ 80 MeV

 250/252Cf source was installed on the
vacuum side of the VLTC

• The setup was also simulated in SRIM

• Required chamber depth: 23 µm

• Total depth (liquid phase chamber): 500 µm

2. Fission fragment tests
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Proof of concept tests

 250/252Cf fission fragments were
collected in the liquid phase chamber
over time

 Subsequent measurement of 10 ml
samples (HPGe)
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Fission Product Collected yield [%]

97Zr 41 ± 12

105Ru 51 ± 16

132Te 34 ± 9

139Ba 35 ± 9

143Ce 40 ± 7

2. Fission fragment tests

HPGe

γ-spectrometry results for 10 ml samples 

 Fission fragments of light and heavy
mass peaks were observed



Applicability of the VLTC for SHEs
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 Which SHEs can be investigated with the VLTC system? [1]

[1] M. Schädel and D. Shaughnessy, Eds., The Chemistry of Superheavy Elements, 2nd ed. Springer, 2014. 



VLTC Paper
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Direct coupling of liquid-phase chemical setups 
to a recoil separator

Beam

Beam

Current state

New developments
 Direct coupling of the vacuum side of a physical preseparator with the liquid phase of a chemical

experiment → development of a Vacuum to Liquid Transfer Chamber (VLTC)

 Followed by continuous operating chemical experiments, e.g. equipped with functionalized
Si-detectors [1] TASCA 2019?
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Functionalized Si-detectors



Functionalized Si-detectors
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 µl-flow cells equipped with Si-detectors

 Si-detectors were chemically modified
(functionalized)

• Depending on the functional groups, e.g.
cation exchanger (R-SO3H)

• Accumulation of radionuclides on the
detector surface

• Combined chemical separation and detection

 Coupling the functionalized a detectors
with the VLTC for continuous fast liquid
phase chemistry experiments

New ways of a faster α spectrometry
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Functionalized Si-detectors
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phase chemistry experiments

New ways of a faster α spectrometry

VLTC



Conclusion
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 Conventional liquid phase SHE chemistry
experiments consist of several preparation
steps, each with its time and yield budget

 With the Vacuum to Liquid Transfer
Chamber (VLTC) several steps are
bypassed

• Resulting in a faster and more efficient transport
of SHE from a physical preseparator into the
liquid phase

 By coupling the VLTC with flow cells,
equipped with functionalized α detectors
continuous experimental runs with Si-
detectors can be realized

 This opens the perspective for trans-
seaborgium chemistry in the aqueous phase
in the future

New ways of a faster α spectrometry



Thank you for 
your attention!
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