

TASCA 21 GSI, Darmstadt, June 21 - 23, 2021 18th Workshop on Recoil Separator for Superheavy Element Chemistry

hochschule mannheim

<u>D. Krupp¹</u>, Ch. E. Düllmann^{2,3,4}, L. Lens¹, J. P. Omtvedt⁵, A. Yakushev³ and U. W. Scherer¹

Direct coupling of liquid-phase chemical setups for heaviest element studies to a recoil separator

¹Institut für Physikalische Chemie und Radiochemie, Hochschule Mannheim: University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
²Department of Chemistry - TRIGA Site, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany
³GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany
⁴Helmholtz Institute Mainz, Staudingerweg 18, 55128 Mainz, Germany
⁵University of Oslo. 0315 Oslo. Norway

Current state of liquid-phase experiments: Categories

- Motivation
- Design of the Vacuum to Liquid Transfer Chamber (VLTC)
- SRIM simulations
- > Fission fragment experiments
- Coupling to ion exchanging alpha detectors
- > Conclusion

[1] Y. Nagame, J. V. Kratz, and M. Schädel, "Chemical studies of elements with Z ≥ 104 in liquid phase," Nuclear Physics A, vol. 944, pp. 614–639, 2015.

State of liquid-phase chemistry experiments: Categories

Experimental setups can be categorized in:

- Discontinuous (cyclic) operating systems e.g. ARCA, AIDA or ALOHA...
 - Chromatographic experiments
 - *α* and SF detection with Si detectors
- Continuous operating systems e.g. SISAK
 - Liquid-liquid extraction experiments
 - α , β and SF detection with liquid scintillation
- With this systems, the chemical properties of the first three super heavy elements in aq. solution were studied
 - Where 265 Sg ($t_{1/2}$ 14.4 $s_{-2.5}^{+3.7} s$) could only be investigated indirectly

[1] Y. Nagame, J. V. Kratz, and M. Schädel, "Chemical studies of elements with $Z \ge 104$ in liquid phase," Nuclear Physics A, vol. 944, pp. 614–639, 2015.

State of liquid-phase chemistry experiments: Optimizations

Further, experiments can be categorized in:

- 1. Stopping of evaporation residues **before** separation
 - All nuclear reaction products are transported to the chemical experiment
 - High selectivity in the chemical experiment is required in order to detect decays of SHE
 - After successful separation of the nuclear byproducts from the SHEs under investigation, α decay can be clearly detected by highresolution α spectrometry with Si detectors...

[1] Y. Nagame, J. V. Kratz, and M. Schädel, "Chemical studies of elements with $Z \ge 104$ in liquid phase," Nuclear Physics A, vol. 944, pp. 614–639, 2015.

State of liquid-phase chemistry experiments: Optimizations

Further, experiments can be categorized in:

- 2. Stopping of evaporation residue **after** separation
 - Unwanted nuclear reaction products and the (unreacted) primary beam are filtered physically...
 - Coupling a chemical experiment with a physical pre-separator simplifies the chemical experiments & reduces the spectral background
- Pioneer experiment at the Berkeley Gas-filled Separator (BGS) coupled through a gas jet system with the SISAK system
 - Successful experiments with the ${}^{257}Rf$ ($t_{1/2}$ 4.4 s ${}^{+0.6}_{-0.5}$ s) were possible due to this coupling

[1] Y. Nagame, J. V. Kratz, and M. Schädel, "Chemical studies of elements with $Z \ge 104$ in liquid phase," Nuclear Physics A, vol. 944, pp. 614–639, 2015.

State of liquid-phase chemistry experiments: Optimizations

Further, experiments can be categorized in:

- 2. Stopping of evaporation residue **after** separation
 - Unwanted nuclear reaction products and the (unreacted) primary beam are filtered physically...
 - Coupling a chemical experiment with a physical pre-separator simplifies the chemical experiments & reduces the spectral background
- Pioneer experiment at the Berkeley Gas-filled Separator (BGS) coupled through a gas jet system with the SISAK system
 - Successful experiments with the 257 Rf $(t_{1/2} 4.4 s {}^{+0.6}_{-0.5} s)$ were possible due to this coupling

[1] Y. Nagame, J. V. Kratz, and M. Schädel, "Chemical studies of elements with $Z \ge 104$ in liquid phase," Nuclear Physics A, vol. 944, pp. 614–639, 2015.

The Vacuum to Liquid Transfer Chamber (VLTC)

New developments

- Instead of further optimizing the multi-stage process:
 - 1. Thermalizing the EVR in gas
 - 2. Gas jet transport of the aerosols
 - 3. Phase transfer of the SHE to the aqeous phase
 - 4. Subsequent chemical experiment
 - A direct coupling between the low pressure side ("vacuum") of a physical pre-separator and the liquid phase of a chemical experiment was designed
 - Resulting in the Vacuum to Liquid Transfer Chamber (VLTC)

The Vacuum to Liquid Transfer Chamber (VLTC)

New developments

- Standard flange
 - Window size: 1270 mm²
- > Grid
 - 80 % ion transparency
- Metal frame
 - Covered with 3.3 µm or 6.0 µm thin Mylar foil
- Liquid phase chamber
 - 3D printed (PMMA-like)
 - Standard ¼-28 fitting connection
 - Sealing ring between Mylar Foil and Chamber
 - Chamber depth: 500 μm
 - Total volume 635.5 µl

SRIM Simulation applicability for SHE experiments

Proof of concept: 1. Simulations

- In advance, simulations were carried out with SRIM on the feasibility of a VLTC...
 - ...using as example experiments with ²⁸⁹Fl at TASCA [1].
 - The aim was to assess the transfer of an EVR directly after TASCA into the aqueous phase with the aid of a VLTC.
- > Three cases were considered:

Case I: Longest FI range Case II: Average FI range Case III: Shortest FI range

[1] A. Såmark-Roth, et al., "Spectroscopy along flerovium decay chains: Discovery of Ds 280 and an excited state in Cn 282," Phy. Rev. Let., vol. 126, no. 3, p. 032503, 2021.

SRIM Simulation applicability for SHE experiments

Proof of concept: 1. Simulations

- SRIM calculates only the ranges of elements up to uranium (Z = 92)
 - Ranges were calculated for ²⁸⁹Z nuclides (Z = 20 - 92) in each material and extrapolated to ²⁸⁹FI.
 - If ²⁸⁹FI still has kinetic energy when it leaves the Mylar foil, it is stopped in the liquid phase, completely.

In a VLTC with...

- …a 3.3 μm ± 0.1 μm thin Mylar foil ²⁸⁹Fl enters the liquid phase in all cases
- ...a 6.0 μm ± 0.2 μm thin Mylar foil, ²⁸⁹Fl enters the liquid phase in case I and II
- Experimental proof: literature data shows, that SHE can be transferred through 6 µm Mylar foil

Residence time

Residence time studies

- Mean residence time (MRT) in the liquid phase \succ chamber was determined with ⁶⁸Ga in 0.1 M HCI
 - Vacuum side: 100 mbar and equipped with a shielded Nal(TI) detector
 - The ⁶⁸Ga tracer solution was delivered through the liquid • phase chamber with a peristaltic pump at 100 ml/min and 50 ml/min respectively
- 50 mL/min \geq
 - 50 % 147s + 15s
 - 80 % $21.5 s \pm 3.0 s$
- 100 mL/min \geq
 - 50 % 7.7 s ± 1.0 s
 - 80 % 12.0 s ± 2.5 s
- 50 % were eluted in \sim 12 5 ml

Transport of 68Ga

Peristaltic

Pump

3D-printed Liquid

Phase Chamber

Diluted

HCl_{aa}

500 µm

(depth)

Mobile Phase $(+ {}^{68}Ga)$

Mobile Phase

Outlet

TASCA 21 | Direct coupling of liquid-phase chemical setups | 23.07.2021 | Dominik Krupp, et al.

505560

Mylar

Foil

Vacuum

Side

NaI(Tl)

Detector

Pressure

Gauge

Vacuum

Pump

Proof of concept tests

2. Fission fragment tests

- > ^{250/252}Cf fission source
 - Emission of light mass fragments (~ 104 u) with E_{kin} ~ 105 MeV
 - and heavy mass fragments (~ 140 u) with *E*_{kin} ~ 80 MeV

- The setup was also simulated in SRIM
- Required chamber depth: 23 μm
- Total depth (liquid phase chamber): 500 μm

Range (μm)

Proof of concept tests

2. Fission fragment tests

- ^{250/252}Cf fission fragments were collected in the liquid phase chamber over time
- Subsequent measurement of 10 ml samples (HPGe)

γ-spectrometry results for 10 ml samples

Fission Product	Collected yield [%]
⁹⁷ Zr	41 ± 12
¹⁰⁵ Ru	51 ± 16
¹³² Te	34 ± 9
¹³⁹ Ba	35 ± 9
¹⁴³ Ce	40 ± 7

Fission fragments of light and heavy mass peaks were observed

Applicability of the VLTC for SHEs

Which SHEs can be investigated with the VLTC system? [1]

[1] M. Schädel and D. Shaughnessy, Eds., The Chemistry of Superheavy Elements, 2nd ed. Springer, 2014.

VLTC Paper

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Available online 18 June 2021, 165486 In Press, Journal Pre-proof (7)

Speeding up liquid-phase heavy element chemistry: Development of a vacuum to liquid transfer chamber (VLTC)

Dominik Krupp ^a A 🖾, Christoph E. Düllmann ^{b, c, d}, Lotte Lens ^a, Jon Petter Omtvedt ^e, Alexander Yakushev ^c, Ulrich W. Scherer ^a

Show more 🗸

+ Add to Mendeley 😪 Share 🌖 Cite

https://doi.org/10.1016/j.nima.2021.165486 🧿

Get rights and content

Direct coupling of liquid-phase chemical setups to a recoil separator

New developments

- ➢ Direct coupling of the vacuum side of a physical preseparator with the liquid phase of a chemical experiment → development of a Vacuum to Liquid Transfer Chamber (VLTC)
- Followed by continuous operating chemical experiments, e.g. equipped with functionalized Si-detectors [1] TASCA 2019?

Functionalized Si-detectors

<u>New ways of a faster α spectrometry</u>

µI-flow cells equipped with Si-detectors

- Si-detectors were chemically modified (functionalized)
 - Depending on the functional groups, e.g. cation exchanger (R-SO₃H)
 - Accumulation of radionuclides on the detector surface
 - Combined chemical separation and detection

Coupling the functionalized a detectors with the VLTC for continuous fast liquid phase chemistry experiments

Prototype development of ion exchanging alpha detectors

Dominik Krupp *, Ulrich W. Scherer Institut für Physikalische Chemie und Radiochemie, Hochschule Mannheim –University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany

Functionalized Si-detectors

<u>New ways of a faster α spectrometry</u>

µI-flow cells equipped with Si-detectors

- Si-detectors were chemically modified (functionalized)
 - Depending on the functional groups, e.g. cation exchanger (R-SO₃H)
 - Accumulation of radionuclides on the detector surface
 - Combined chemical separation and detection

Coupling the functionalized a detectors with the VLTC for continuous fast liquid phase chemistry experiments

Nuclear Inst. and Methods in Physics Research, A 897 (2018) 120-128

VLTC Vette Vaste Vaste Voltage Supply Preamplifier Amplifier DAQ Device Time & Energy -Spectrum

Conclusion

<u>New ways of a faster α spectrometry</u>

- Conventional liquid phase SHE chemistry experiments consist of several preparation steps, each with its time and yield budget
- With the Vacuum to Liquid Transfer
 Chamber (VLTC) several steps are bypassed
 - Resulting in a faster and more efficient transport of SHE from a physical preseparator into the liquid phase
- By coupling the VLTC with flow cells, equipped with functionalized α detectors continuous experimental runs with Sidetectors can be realized
- This opens the perspective for transseaborgium chemistry in the aqueous phase in the future

TASCA 21 GSI, Darmstadt, June 21 - 23, 2021 18th Workshop on Recoil Separator for Superheavy Element Chemistry

hochschule mannheim

Thank you for your attention!

