ION-BEAM INDUCED STRUCTURAL AND CHEMICAL CHANGES IN TARGETS USED FOR SUPERHEAVY ELEMENT PRODUCTION

C.-C. Meyer^{1,2}, E. Artes^{1,2,3}, Ch.E. Düllmann^{1,2,3}, R. Haas^{1,2,3}, S. Herz¹, E. Jäger³, B. Kindler³, B. Lommel³,

F. Munnik⁵, M. Rapps([†])^{1,2}, D. Renisch^{1,2}, C. Trautmann^{3,4}, I. Tzifas³, A. Yakushev³

[1] Dept. of Chemistry - TRIGA site, Johannes Gutenberg University Mainz, Germany

[2] Helmholtz-Institut Mainz, Germany

[3] GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany

[4] Institute of Materials Science, Technical University of Darmstadt, Germany

[5] Ion Beam Center, Helmholtz-Zentrum Dresden-Rossendorf, Germany

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

HIM HELMHOLTZ Helmholtz-Institut Mainz

Outline

- irradiation of targets made by Molecular Plating (MP)
- new approaches to target analysis
- new insights into the MP process and ion beam induced changes
- using lanthanide substitutes

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Model systems

SHE research

Jäger, E., et al. J Radioanal Nucl Chem 299 (2014) 1073-1079.

1 x 10¹³ ions/cm²

Scope of the ongoing target analyses

- neutron activation analysis (NAA)
- confocal Raman microscopy
- nuclear magnetic resonance (NMR)
- elastic recoil detection analysis (ERDA)
- Rutherford backscattering spectrometry (RBS)
- particle-induced X-ray emission (PIXE)
- X-ray diffraction (XRD)
- grazing incidence X-ray diffraction (GIXD)
- atomic force microscopy (AFM)
- confocal 3D laser scanning microscopy
- scanning electron microscopy (SEM)
- energy dispersive X-ray spectroscopy (EDX)
- radiographic imaging (RI)

Scanning electron microscopy of fresh MP thin films

La MP sample, 500 μ g/cm² on a TASCA segment

JOHANNES GUTENBERG

UNIVERSITÄT

JGU

Analytical methods shown

- scanning electron microscopy (SEM) morphology
- confocal Raman microscopy chemical information
- ion beam analysis
 - particle-induced X-ray emission (PIXE) qualitative elemental distribution
 - Rutherford backscattering spectrometry (RBS) quantitative elemental composition

Confocal Raman microscopy

Fluence series

Ion beam analysis (IBA) of fresh Tm MP targets

fresh Tm MP film, 500 μ g/cm², on 25 μ m Ti foil

preliminary data

- 3 MeV H⁺ beam
- 7x5 µm² beam spot size
- thickness distribution of the tiles and the mudcracking
- individual tiles selected for RBS from the PIXE image

Barradas, N. P., et al. *Appl. Phys. Lett.* 71 (1997) <u>291-293</u>.

RBS of fresh Tm MP targets

Barradas, N. P., et al. Appl. Phys. Lett. 71 (1997) 291-293.

IBA of irradiated Tm MP targets

Tm MP film, 500 μ g/cm², on 25 μ m Ti foil

preliminary data

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

SEM of irradiated Tm MP targets

JOHANNES GUTENBERG UNIVERSITÄT MAINZ JGU

Tm MP film, 500 μ g/cm², on 25 μ m Ti foil

The ¹⁶⁹Tm target after the bombardment with the ³⁵Cl beam dose of **2 x 10¹⁴ ions/cm²**

SUMMARY

- Molecular Plating produces not only oxides and hydroxides, but also carbon compounds.
- The carbon compounds are a mixture of formats and carbonates.
- Irradiation leads to the loss of carbon compounds in the MP thin films and the formation of an unidentified oxidic compound.
- The thin films are compacted by irradiation, meaning that the newly formed chemical compound likely has a higher density.

ACKNOWLEDGEMENTS

Electrical and precision mechanics workshops of the research reactor TRIGA Mainz.

Mag: 10000x HV: 20 kV - [SE] - WD: 15 mm