Status of the cw-LINAC-project w. Barth^{1,2,3}

¹ Helmholtz Institut Mainz, Germany
 ² GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
 ³ Johannes Gutenberg-Universität Mainz, Mainz, Germany

- 1. Introduction
- 2. General Linac layout
- 3. RF-cavity development
- 4. R&D activities
- 5. First heavy ion beam acceleration
- 6. cw-Linac status
- 7. Outlook

(1975)

cw-Linac@GSI/Motivation

FAIR:

- high beam currents
- low repetition rate (max. 3 Hz)
- low duty factor (0.1 %, pulse length for SIS18 only 100 μs)

"Super Heavy Element":

- relatively low beam currents
- high repetition rate (50 Hz)
- high duty factor (100 %, pulse length up to 20 ms)

"Material Science":

- Heavy lons (m \ge 200)
- High Beam Energy (up to 10 MeV/u)
- high repetition rate (50 Hz)
- Continuous Beam Energy Variation (1.5 10 MeV/u)

Poststripper Rf-upgrade for FAIR

FAIR:

- high beam currents
- low repetition rate (max. 3 Hz)
- low duty factor (0.1 %, pulse length for SIS18 only 100 μs)

"Super Heavy Element":

- relatively low beam currents
- ----high repetition rate (50 Hz)
- high duty factor (100 %, pulse length up to 20 ms)

"Material Science":

- Heavy lons (m \ge 200)
- High Beam Energy (up to 10 MeV/u)
- Continuous Beam Energy Variation (1.5 10 MeV/u)

Layout of the future superconducting cw HELIAC*

* HEImholz Linear ACcelerator

Design parameters sc cw-LINAC				
A/q		≤ 6		
Frequency	MHz	216.816		
Beam current	mA	≤ 1		
Injection energy	MeV/u	1.4		
Output energy	MeV/u	3.5-7.6		
Length	m	20		
CH cavities	#	12		
Rebuncher	#	4		
Solenoids	#	8		

Layout properties

- Short multigap CH cavities: length <1 m), transverse dimensions <0.5 m
- Modular construction: 4 cryomodules each with 3 CH, 1 buncher, 2 solenoids
- Compact Linac design (E_a ≥ 7.1 MV/m)

Maximum energy per CM

Cryo Module	Output energy (MeV/u			
	A/Z=8.5	A/Z=6	A/Z=3	A/Z=1
CM1	2.6	2.9	3.6	4.6
CM2	3.5	4.2	5.5	7.7
CM3	4.5	5.8	7.8	10.9
CM4	5.55	7.6	10.5	14.6
CM4 + CH12	6	8	11.4	15.6

H-type Cavity developments

RF Testing of the CH-Cavity (10/2016)

Experimental setup of the demonstrator at GSI

- First superconducting 217 MHz-CH-Cavity
- High E_{acc}-gradient up to 10 MV/m
- High quality factor → low RF-dissipation (<10W)
- Equidistant gaps → continuous energy variation
- 2017: Successful beam commissioning at GSI

First beam test

Rf-amplitude-scan

cw-Linac-Prototyping: Advanced Demonstrator

- New cryo module layout containing demonstrator CH cavity, 2 short CH cavities, 1 buncher and
 2 solenoids
- Simplified cavity design (easier manufacturing & surface processing
- CH1 & CH2 are already produce and tested
- cryostat delivery Q2/2021 ✓
- compact linac design for or higher A/q (=8.5)

Transversal beam dynamics cw-Linac layout

4K He-supply infrastructure@GSI

SRF-test activities

- CH0: SRF-test at HI-Mainz Lab
- CH1: SRF-test at HI-Mainz Lab
- CH2: SRF-test at vertical cryostat (GU-Frankfurt)
- Set up of a new HELIAC-test area at GSI-Darmstadt
- Universal test kryostat for horizontal tests of "undressed" CH-cavities

Universal Test Cryostat at GSI-Darmstadt

CH2 at GU-Frankfurt

Cleanroom Operation at HI-Mainz

Main features

- Aluminum double floor (5 tons/m³)
- Heavy duty rail system
- Ultra high purity water supply (0.055 µS/cm, 2500 l/h, 5000 l storage)
- High pressure washer
- High pressure rinse (HPR)
- Ultrasonic bath and conductance rinse
- 160°C vacuum oven

Industry partnership (planned): Shared clean room for SRF-cavity preparation and installation projects

Additional equipment

- Ionized nitrogen guns
- Dish washer
- Lift trolleys (200 kg) Particle counters
 - Wet/Dry vacuum
- Smaller US-baths cleaners

Preparation for PoF4-activities

- Cleanroom succesfully modified with new installations
- Cleanroom re-classified
- Particle concentrations even lower due to weekly cleaning
- · On-going testing of equipment in operation

HELIAC@LINAC tunnel & Link2UNILAC

cw-Injector: nc-IH-APF-Drift Tube LINAC IH1&IH2

HELIAC

Ê

8 Ξ

6

z/m

8

±1°

Cavity Phase

0

-10

-20 Ó

Advanced Demonstrator/Status: 06/2021

New Testbunker with test bench (2020)

TASCA 21

Installation of Matching Line (2020)

CM1-Advanced Demonstrator (2021)

CM1 at Test Bunker (2021)

Normal conducting cw-rebuncher cavities

Rebuncher Cavity (β =0.054)

Measured Roentgen-spectrum

cw-LINAC "basic approach"

normal conducting 25%-injector Linac

- ECR + LEBT
 - 18 GHZ-ECR
 - LEBT (prelim. layout)
- cw-RFQ
 - former HLI-RFQ
- cw-IH-DTL (tendering: Q1 2021)
- transport sections, etc.
 - MEBT, Matching Line, HEBT (Quads, Dipole)
 - cw-Rebuncher, debuncher
- High power Rf-ampl. (RFQ, IH, buncher) (reused)
- Other supply systems
 - Power supplies (LEBT, MEBT, HEBT)
 - beam diagnostics, vacuum system, controls

superconducting cw-Linac

- CM1 (PoF3)
 - CH1 tested & CH2 tested
 - Rebuncher cavity ordered
 - Cryostat ordered
 - Solenoids ordered
 - 4 rf amplifiers ordered
 - aux. comp. (couplers, tuner, BPM, LLRf)
- CM2 (PoF4)
 - CH3-5 specified, ordering (tendering/Q3 2021)
 - Re-buncher cavity ordered
 - Cryostat ordered
 - Solenoids, rf Amplifiers, aux. components
- CM3 (BmBF)
 - CH6-8 specified, ordering (tendering/Q2 2021)
 - Re-buncher, Cryostat, Rf Amplifiers, ...
 - Solenoids

W. Barth, TASCA21, "Status of the cw_LINAC-project", 22. June 2021

Q4/2022	CM1 (Advanced Demonstrator) beam test at Test Area	
Q2/2024	Linac-Tunnel (@SH2/3) ready for installation of components	
Q3&4/2024	ECR and LEBT commissioning @ Linac-tunnel	
Q4/2024	CM2 beam test at Test Area	
Q1/2025	RFQ commissioning @ Linac tunnel	
Q2/2025	cw-IH-DTL commissioning @ Linac tunnel	
Q3/2025	Matching Line & CM1 commissioning	
Q4/2025	CM2 commissioning (and CM3 beam at Test Area)	
Q1/2026	CM3 & HEBT to UNILAC commissioning	

- Demonstrator beam commissioning was a major milestone paving the way to the GSI/HIM-cw-Linac
- Design acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at full transmission and maximum available beam intensity
- Beam quality was measured as excellent in a wide range of different beam energies, confirming EQUUS beam dynamics design
- Advanced cw-Linac layout based on four cryomodules, each equipped with three CH-cavities and a sc-rebuncher demonstrates the high capabilities due to energy variation preserving the beam quality
- New design could provide beam acceleration for a wide range of different ions (protons to uranium) above the design beam energy, featuring the ambitious GSI-user program, while the GSI-UNILAC is upgraded for short pulse high current FAIR-operation
- A basic cw-Linac approach (3 CM, 25% duty factor) is envisaged to be built and commissioned until 2026

Further HELIAC-activities

CH3-CH5 Design

High power Rf-coupler

- Design of CH3-CH5 for CM2
- Unified design of elements for 6 cavities:
 - stems
 - end cups
 - dynamic tuners
 - reduction of the costs
- Tender for manufacturing is in preparation
- HPR treatment at HIM-clean room
- Design, layout, manufacturing CM2-key components
 - cryostat
 - sc CH-rebuncher
 - sc-solenoids
 - rf-power coupler
 - fast and slow rf-tuning system
 - rf-amplifier-system
- Cryomodule assembly & rf-test at HIM
- CM2 beam test at advanced test area

Cryomudule 2

sc-CH-rebuncher

Thank You for Your attention!

June 2021: Delivery of CM1

W. Barth, TASCA21, "Status of the cw_LINAC-project", 22. June 2021