Progress in Erlangen

A. Lehmann, A. Britting, W. Eyrich, S. Reinicke, F. Uhlig Universität Erlangen-Nürnberg

- Burle-Photonis MCP-PMTs
 - Various performance measurements
 - Magnetic field behaviour
- Lifetime measurements
 - Burle-Photonis 85012 and BINP #82
 - Results of other groups

Albert Lehmann

What happened since March Meeting?

- Lifetime measurements for XP85012 continued (until Apr.16)
- Several other measurements for XP85012 (rate stab., time res.)
- Magnetic field measurements in Juelich (Apr.19-23)
 - 3 models of XP85012 (9000296, 9000413, 9000414)
 - 1 model of Hamamatsu R10754-00-L4 (jt0096)
- Apr. 26/27 botnet attack at physics server
 - demand of reinstallation of all computers in the physics institute
- Mid May: Axle of XY-scanner broke
- June 4: crash of hard drive on our main DAQ computer
 - (almost) no backup existent !!
 - attempt to recover the hard drive in specialized company

Albert Lehmann

Darkcount of Photonis 25 µm MCP-PMTs

- Darkcount rate (gain 10⁶; thresh. 50 mV; ampl. x200): 5-10 kHz/cm²
- Similar slope for both XP85012 models

Albert Lehmann

Rate Stability of various MCP-PMTs

- Different rate stability for 2 models of Photonis XP85012 (25µm)
- XP85012 stable up to ~1 MHz/cm² s.ph. \rightarrow okay for barrel DIRC

Albert Lehmann

Photonis Single Photon Time Resolution

- single photon time resolution of ~50 ps for 85011 and 85013
 - Philips Scientific 705 discriminator and Ortec FTA820 amplifier (x200)
- time resolution of 85012 is significantly better !

Albert Lehmann

XP85012 Single Photon Time Resolution

Amplifier Ortec FTA820 (x200; 350 MHz) --- Discriminator Philips Scientific 705

BINP	Photonis				Hamamatsu
#73	XP85011	XP85012	XP85013	Prototype	R10754
6 µm	25 µm	25 µm	25 µm	10 µm	10 µm
27 ps	49 ps	37 ps	51 ps	41 ps	32 ps

- time resolution of all MCPs 50 ps and better
- no dependence on the B-field

Albert Lehmann

Gain in Magnetic Field

XP85012 (25 μm)

XP85012 (25 μm)

R10754 (10 µm)

- 25 μ m MCP gain breaks down at ~1 T \rightarrow marginal for Barrel DIRC
- 10 µm MCPs should be suitable for both Endcap and Barrel DIRC

Albert Lehmann

Gain and Direction of B-Field (Φ)

Albert Lehmann

Gain and Direction of B-Field (θ)

Hamamatsu R10754 (10 µm)

Photonis XP85012 (25 µm)

Albert Lehmann

Comparison of θ and ϕ Behaviour

• Chevron angle = 16° ; orientation in θ (= ξ) PMT dependent Albert Lehmann PID Subgroup Meeting --- Stockholm -- June 15, 2010

How to Measure MCP Lifetime

- Continuous illumination
 - 460 nm LED at 272 kHz rate attenuated to single photon level
 - ~0.4 photo electrons (ph.e.) per pixel → ~3.5 mC/cm²/day
- Permanent monitoring
 - record MCP pulse heights at highly prescaled rate using CAMAC DAQ
 - measure LED light intensity using the current of a photo diode
- [Ir]regular quantum efficiency (Q.E.) measurements
 - 300–800 nm wavelength band with 1 nm monochromator resolution
 - measure current of calibrated reference diode [Hamamatsu]
 - measure current of shorted (2 MCPs and anode) MCP-PMT
- Analysis
 - calculate Q.E. from current ratio of MCP-PMT and reference diode
 - extract gain and number of ph.e. from pulse height spectra

Albert Lehmann

Setup for Illumination

- importance of solid and repeatable setup (often taken apart)
- lens creates roughly parallel light of the LED spot
- homogeneous illumination of whole MCP (blue area of light) and monitor diode

Albert Lehmann

Pulse Heights of Photonis XP85012

• Gain: ~8•10⁵ per pixel; Npe: ~0.4 per pixel [~4 at MCP-out ??] Albert Lehmann PID Subgroup Meeting --- Stockholm -- June 15, 2010

Gain after Illumination

Moderate gain variations for BINP #82 and Photonis XP85012

Albert Lehmann

QE after Illumination

BINP #82: decrease of QE depends upon wavelength
XP85012: first slight increase of Q.E. then it starts dropping
Albert Lehmann PID Subgroup Meeting --- Stockholm -- June 15, 2010

Lifetime Measurements in Ljubljana

Ageing studies

Test set-up: high rate illumination of the whole photosensitive surface by LED, pulsed laser monitoring of the amplification. Reference PMT is used for periodic QE measuemnets with a monochromator in the same set-up.

Results: after 400 mC/cm² (= Belle II lifetime) the efficiency drops by about $10\% \rightarrow$ no problem for operation.

According to P. Krizan this was an old 2x2 Planacon tube with 10 μ m pores and NO protection layer, NO surface treatment and NO improved vacuum \rightarrow **STRANGE ?!**

Albert Lehmann

Lifetime Measurements in Nagoya (I)

- Square-shape MCP-PMT
 - Develop new version with Hamamatsu
 - Change of internal structure and cleaning method
 - Change to put Al protection layer on 2nd MCP
 - Recover correction efficiency $(35\% \rightarrow 60\%)$
 - Expect less effect of 1st MCP to lifetime
 - Because of 1/10³ smaller number of electrons
- Lifetime measurement
 - Light load by LED pulse (1~20kHz)
 - 20~50 p.e. /pulse
 - Relative efficiency, gain and TTS
 - By pulse laser at single photon level
 - Monitored by standard PMT

Albert Lehmann

PID Subgroup Meeting --- Stockholm -- June 15, 2010

MCP Plate

Lifetime Measurements in Nagoya (II)

QE variation

- <10% drop at 350mC/cm²; sufficient lifetime

Construction of a Cooling Box

- Size: $\sim 60 \times 60 \times 60 \text{ cm}^3$
 - large enough for XY-scans of multi-pixel SiPMs
 - vacuum insulated panels
 - cooling medium: dry gas
- Thermostat ministat 230-cc
 - temperature: -40 ... 200 °C
 - temp. constancy: 0.02 K
 - external temperature control
- Box construction finished
 - Minor adjustments still needed
 - First tests very soon

Albert Lehmann

Summary and Outlook

- New Photonis XP85012 (with better vacuum) shows very good performance in rate stability and time resolution, but magnetic field immunity only up to about 1 Tesla
- Lifetime result for new XP85012 is somewhat disappointing
- Ordered new Photonis XP85112 (with 10 µm pores) with same form factor as XP85012 (delivery end of June)
- Trying to get SL10 with protection layer through Nagoya
- Diamond dynode PMTs not yet delivered
- Preparations for performance measurements of SiPMs
 - new cooling box exists and will be ready for tests very soon
 - several SiPM candidates available

Albert Lehmann