

pbar Separator Septum Non-Linearity

S. Udrea

GSI Helmholtzzentrum für Schwerionenforschung

Acknowledgements:

O. Dolinskyy, R. Hettinger, K. Knie, H. Leibrock, S. Litvinov, S. Ratschow, P.Yu. Shatunov, I. Schurig

4th BINP-FAIR Collaboration Coordination Workshop, May 25-29, 2020

6 5 1

pbar Separator Beamline Overview

4th BINP-FAIR Collaboration Coordination Workshop, May 25-29, 2020

GSI

Simulation Software

- GICOSY is an ion optics software based on COSY 5.0, developed at the University of Gießen, Germany and still maintained also at GSI (web-docs.gsi.de/~weick/gicosy/). It has been used to assess parameters such as beta and dispersion function, twiss parameters and envelopes and to generate the transfer matrices of the ion optical elements as needed by MOCADI.
- MOCADI is a Monte Carlo simulation software developed and maintained at GSI (web-docs.gsi.de/~weick/mocadi/) which has been used to assess losses using realistic aperture shapes and an initial pbar distribution due to a MARS simulation of pbar generation through proton-target interaction followed by magnetic horn focusing*.

* horn focusing simulated by dedicated software

Remarks on Collimators used in MOCADI

- Collimators are either elementary, i.e. fully absorbing and infinitesimally thin, or composed of elementary ones.
- The horizontal-vertical (HV) collimator placed between the magnetic horn and PS01QS01, the beamline's first quadrupole, is simulated by two identical elementary collimators in 1.6 m distance from each other. The reference HV-collimator has a circular aperture with a 70 mm diameter.
- The horizontal and vertical collimators between PS01QS02 and PS01QS03 and the momentum collimator between PS01QS04 and PS01QS06 are each elementary ones.
- Quadrupole apertures* are simulated as three subsequent elementary collimators: at entrance, in the middle and at exit.
- Dipole apertures* are simulated as two subsequent elementary collimators: at entrance and at exit. **Exception:** the septum dipoles, where there are five elementary collimators per dipole.
- A special phase space collimator is used for assessing losses to be expected due to particles not within the ring's (geometric) acceptance.

* due to yoke or vacuum chambers

Input Beam Distributions used with MOCADI

Reference Apertures used with MOCADI

4th BINP-FAIR Collaboration Coordination Workshop, May 25-29, 2020

GSI

Losses for Different Acceptance Limited Beams

Note: No dedicated collimators used in these simulations

4th BINP-FAIR Collaboration Coordination Workshop, May 25-29, 2020

Reducing Losses by Chamber Removal/Modification

4th BINP-FAIR Collaboration Coordination Workshop, May 25-29, 2020

Reducing the Beam Envelope @ TCR1MH02

Adding a Sextupole to Reduce Losses in Septum

Ray tracing simulations performed with GICOSY. A point source emits along three different directions respectively three rays of different energies, including the reference one. **a)** 1st order simulation, sextupole is **off** (but also irrelevant); **b)** 3rd order simulation, sextupole is **off**; **c)** 3rd order simulation, sextupole is **on**.

Choosing HV-Collimator's Shape and Size

Note: Particle distributions at horn's exit plane (upper graphs) and after a drift to the position of the collimator's exit plane. No collimator used for this simulation!

Losses Comparison: Reference vs. New Set-Up

4th BINP-FAIR Collaboration Coordination Workshop, May 25-29, 2020

Losses Comparison: 0, 1 or 6 Sextupoles On

Note: Acceptance limited beam used for these simulations

4th BINP-FAIR Collaboration Coordination Workshop, May 25-29, 2020

Typical Septum Field Non-Linearity for Simulations

Note: The vertical field component is shown as function of lateral displacement from the reference particle's position within the (horizontal) symmetry plane of the septum.

Phase Space at Input and Output, Ideal Septum

Note: Particle distributions at input (horn's exit plane) are shown in the upper graphs. Particles shown in red would get lost because they don't fit into the CR's acceptance!

Phase Space at Input and Output, -1% Non-Linear Contribution

Note: Particle distributions at input (horn's exit plane) are shown in the upper graphs. Particles shown in red would get lost because they don't fit into the CR's acceptance!

Phase Space at Input and Output, +1% Non-Linear Contribution

Note: Particle distributions at input (horn's exit plane) are shown in the upper graphs. Particles shown in red would get lost because they don't fit into the CR's acceptance!

Phase Space at Input and Output, -2% Non-Linear Contribution

Note: Particle distributions at input (horn's exit plane) are shown in the upper graphs. Particles shown in red would get lost because they don't fit into the CR's acceptance!

Phase Space at Input and Output, +2% Non-Linear Contribution

Note: Particle distributions at input (horn's exit plane) are shown in the upper graphs. Particles shown in red would get lost because they don't fit into the CR's acceptance!

Losses for Different Non-Linear Contributions

Note: Acceptance limited beam used for these simulations, CR added but without collimators to simulate limiting apertures or non-linear effects.

4th BINP-FAIR Collaboration Coordination Workshop, May 25-29, 2020

Final Remarks

- Relatively small changes applied to the reference ion optical set-up may sensibly improve the transmission to the ring.
- Adding sextupoles to the set-up appears to be useful, at least for reducing losses in the septum.
- Non-linear contributions to the field in the septum do not appear to have a strong effect on losses due to beam-acceptance mismatch, HOWEVER these are just PRELIMINARY RESULTS and simulations with a field closer to reality should be performed.

6 5 1

Phase Space after Injection and at the SP

Note: Particle distributions after injection are shown in the upper graphs.

4th BINP-FAIR Collaboration Coordination Workshop, May 25-29, 2020

GSI