Collector Ring Injection/Extraction Septum Magnets Status

Dr. Petr Shatunov

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Online 28, May, 2020

Status: Injection Septums

PSPas	Subproject	Responsibilit Y	S	CDR	FDR	PR FoS	FAT FoS	SAT FoS	SP	FAT SP	DL	SAT SP	IN	СО
2.5.2.5.1-2	Injection and extraction septum magnets	P. Shatunov	x			Desi Proc	gn, Ma ureme	agnetic nt, Pro	simu oducti	ulations ion pre	s, Blu parat	eprints ions sta	are d arted	one
2.5.3.3.1-2	Injection and extraction septum power supply	D. Senkov	x			Desi CDR	gn is d t is upo	lone. N coming	lumb I.	er of P	S typ	es redi	uced.	
2.5.5.1-2	Injection/ Extraction Kicker	A. Kasaev	x			CDR	t is upo	coming						
2.9.2	Magnets	A. Starostenko,	x	x			Ado	ditiona	l corr	ector is	s in d	esign		
2.9.3	Power Converters	D.Senkov,	x	х			All	fine						
2.9.6	Diagnostics	Yu.Rogovsky	x	x			Add	ditiona	 BPN 	 /I is in (desig	n		
2.9.7	Vacuum	A.Krasnov				Des	sign is	done.	Spec Spec	s+CDF	Rs pla	nned		

Injection Septum Magnet

Maximum magnetic field in the aperture	0.6 Т
Minimum magnetic field in the aperture	0.3 T
Pole gap height	173 mm
Air gap width	173 mm
Flux density in yoke	1.2 ÷ 1.5 T
Relative integral magnetic field quality in the vacuum chamber	10 -2
Effective magnetic length	0.940 m
Yoke length	0.874 m
Yoke width	≤ 0.420 m
Yoke height	≤ 0.420 m
Assembled magnet mass	≤ 1.0 t
Orbit radius	21.666 m
Maximum deflection angle	0.04233 rad
Field rise time (0 to max)	0.75ms
Lamination thickness	1.0 mm
Packing factor	0.98

Question from previous session

Beams Injection Scheme

Aperture limitation in septum

Ref. Orbit Kickers: 0.055458 T Kicker max: 0.054T Beam size in CR01QS01: ±62mm Ref. Orb to Vac.Ch. Wall: 40mm

Ref. Orbit Kickers: 0.055458 T Kicker max: 0.054T Beam size in CR01QS01: ±62mm Ref. Orb to Vac.Ch. Wall: 40mm

Beams Extraction

Beam cross-sections @CR02QS09 WQ

Beam cross-sections @CR02QS04 NQ

Extraction Septum Update

One magnet option

Extraction Septum Update

Number of magnets	2
Magnetic field	1.2T
Radius of curvature	11070mm
Effective legth	687.35mm
Final orbit deviation angle	7.513°
Yoke length	640mm
Voltage	2.5kV
Pulse length	3 msec
Gap	65 mm
Integral mag. field quality	0.001 ?

- Reduced voltage: 5kV → 2.5kV
- Reduced current: 5kA → 4kA
- Reduced inductance
- Increased height/width of the gap
- Better fitting of the beam
- Cheaper vacuum chamber
- Whole iron weight rise: ~1%
- Whole copper wight rise: ~25%
- Types of PS: 2 → 1
- Number of PS: 1 → 2 (ISPS prototype+3 PS + ESPS prototype + 1PS)

Extraction Septum Vacuum Chamber

Vacuum chamber blueprints and 3D model are ready

Injection Septum: Magnetic Field Simulations

Extraction Septum: Magnetic Field Simulations

Magnetic Field Quality Requirements

Initial distribution of 2000 particles

Distribution after 3 Septums with △B/B=0.02 at radius 60mm

Losses: 94 particles exceeding horizontal amplitude 115 particles exceeding vertical amplitude ~10% off losses

Paper published in EDMS by Ivan Koop in 02.2020

Magnetic Field Quality Requirements

Injection Septum Magnet TDR2014

N N N N N N N N N N N N N N N N N N N		
Operation mode		pulsed
Maximum field	Т	0.85
Minimum field	Т	0.425
Bending angle	rad	0.125
Curvature radius	m	15.3
Effective length	m	2.2
Useable horizontal aperture	mm	160
Useable vertical aperture	mm	140
Vertical pole gap height	mm	150
Thickness of vacuum chamber wall	mm	5
(rectangular shape)		
Septum thickness (including shielding screen and vacuum cham-	mm	< 25
ber)		
Field quality (integral)	rel. units	±1×10 ⁻³
Maximum current	kA	0.4
Inductance	mH	0.95
Resistance	mOhm	9.8
Maximum voltage (dc + ac parts)	V	103
Maximum power	kW	398.2
Average power consumption (for 1.5 s cycle)	kW	30
Maximum ramp rate	T/s	8.5
Maximum current rate	kA/s	64
High field flat top	ms	5
Low field flat top	ms	5
Cycle length	S	1.5
Cycle length Water pressure drop	s bar	1.5 2.2
Cycle length Water pressure drop Water flow rate	s bar I/min	1.5 2.2 25.2
Cycle length Water pressure drop Water flow rate Water temperature rise	s bar I/min ℃	1.5 2.2 25.2 40

Units

Value

1

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

Parameter

Number of magnets

Further Steps

Injection:

- Spec. Change request \rightarrow submitted
- Update for detailed injection parameters → ready for submission
- CDR → right after Specs change. Everything is ready.
- FDR → right after CDR. Blueprints are ready.
- Vacuum chambers and tests → August-September 2020
- Production of pre-series and tests → 2021

Extraction:

- Spec. Change request \rightarrow to be submitted after the workshop
- Update for detailed extraction parameters $\ \ \rightarrow \ to \ be \ submitted$
- Magnetic field calculations → 1-2 Monthes
- Design finalization \rightarrow end of summer.
- CDR \rightarrow Autumn 2020
- FDR \rightarrow As soon as blueprints will be ready.
- Production goal \rightarrow start after the production of ISM pre-series.

Thank you!