

Status of BINP collaboration with FAIR

Eugene Levichev Budker INP, Novosibirsk

4th FAIR-BINP Meeting 25-29 May, 2020, Novosibirsk

		FAIR CONTRACTS			
	Number	Description short	Amount, Euro	Paid, Euro	
1.	dated 10.03.2017	Panda SC Magnet	7 270 000,00	3 110 000,00	
2.	CC 2.3.2-2	HEBT magnets	18 564 771,43	5 493 420,10	
3.	CC 2.5.2.1.	Dipole magnets	13 688 016,19	1 435 469,76	
4.	dated 12.12.2016	CBM magnet	4 961 649,82	1 902 600,24	
5.	CC 2.4.2.1.1.2	Dipole magnets	3 801 092,00	1 015 252,00	
6.	CC CR.HOAI	CR responsibility	8 495 805,00	2 352 004,90	
7	CC 2.5.2.2.1	CR components	19 277 179,92	2 179 801,57	
8	AFAA1	Vacuum chambers	1 114 025,25	74 798,85	
	to CC 2.4.2.1.1.2 for				
	2.4.7.1.12.1				
9	CC 2.3.7.1.2.3.2 as	HEBT vacuum chambers	1 713 363,67	179 335,99	
	AFAA2 to CC 2.4.2.1.1.2				
10	CC 2.4.7.1.2.2.1 as	Dipole magnets	870 846,74	82 564,66	
	AFAA3 to CC 2.4.2.1.1.2				
11	AFAA4	Vacuum components HEBT-4	4 178 807,41	799 350,69	
12	AFAA5	Beam pipes and chambers	1 654 201,05	Not signed	
13	AFAA6	P-bar quadrupoles	1 450 402,23	Not signed	
		TOTAL	87 040 160,71		
		GSI CONTRACTS			
	Implementing agreement dd 28.06.2018	Dipole magnet development	300,000.00		
	Accelerator Implementing Agreement No.2 dd 25.11.2019	S FRS Feedbox development	220 000,00		
	Agreement 31.01.2020	PS Second Module	410 000,00		
		TOTAL	630 000,00		

Contracts	Matter	Value	Absorbed	Signed
CC CR.HOAI	Technical coordination	8,495,805.00	2,352,004.90	19.08.2014
CC 2.5.2.2.1	CR WPs: magnets; PCs; vacuum; kickers; septa; diagnostics, TCR1 beamline	19,277,179.92	2,179,799.29	26.06.2018
CC 2.5.2.1	CR dipoles	13,688,016.19	n/d	12.10.2015

Assembly of dipole and quad chambers prototypes test:

vacuum achieved!

FoS dipole production: yoke parts and coils

Scintillating screen plates

FoS wide steering magnets

Wide pickup prototype

Scrapers supports

HEBT magnets batch 2-4 (CC2.3.2-2)

Dipole 4_0	2
Dipole 10_0	6
Dipole 13_0	2
Dipole 13_3	3
Dipole 19_0	4
Dipole 15_0	4
Dipole 15_1	1
Dipole 16_0	1
Dipole 17_0	1
Quadrupole 2	90
Quadrupole 2 long	4
Quadrupole 10	4
Quadrupole 11	70
Quadrupole 12	12
Steering 13	5
Steering 18	48
Steering 100	45
Total magnets	303

Total ≈ 18 000 000 euro

Final delivery until October 2021

Delivered 49 magnets
Ready for delivery 27 magnets
Ready for FAT 23 magnets

Vacuum component contracts

Name	Signed	End	Cost M€	Status
AFAA1 SFRS Diagnostic chambers	03.2019	12.2021	1.11	CDR for FoS is passed. 2D and FEM analysis for FOS are uploaded into EDMS (for FDR) and accepted as Materials for FoS production are ordered.
AFAA2 HEBT Batch 2-3 Vacuum chambers	05.2019	07.2021	1.71	There is delay but not critical. CDR – 50%. 2D drawings – 30%. 70% of materials are under ordering. First FAT is expected in July 2020.
AFAA3 SFRS Vacuum chambers inside SC dipoles	10.2019	06.2022	0.87	3D model of combined chamber with pumping port is created. There is a problem with bellows fixation. Conception of assembly the combined chamber into SC magnet under consideration.
AFAA4 HEBT Batch 4 Vacuum chambers	11.2019	12.2022	4.18	3D model of most complex chamber (x-cross) is accepted. 2D drawings of the x-cross chamber, standard pumping ports, drift chambers and supports are under consideration at BINP workshop
AFAA5 SFRS vacuum components			1.5	Time schedule is agreed. Cost under consideration. Waiting detailed specification
SFRS branching chambers inside SC dipoles			0.31	BINP agrees to produce the chambers

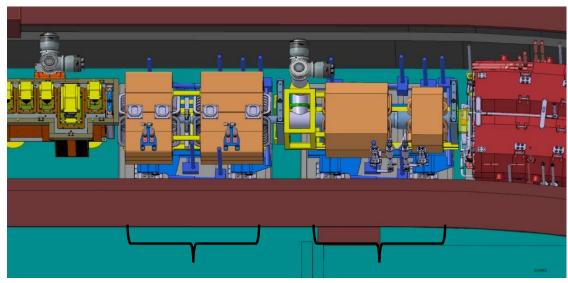
CC 2.4.2.1.1.2 (03.2019 - 10.22)

New CAD model, 2020

TOTAL: 3801092.00 EUR

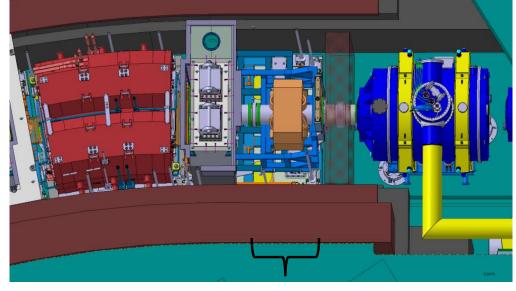
FAIR supplies cable to BINP

TOTAL - Cable Cost = 2900720.00 EUR


Two radiation resistance magnets based on a design of the 2010 prototype.

2.2.05.0121 Accelerator Implementing Agreement No. 1, GSI (end date is of May 2020)

Total: 75000.00 EUR


Development of 3 quadrupole and sextupole SFRS magnets.

3D magnetic field simulation has been done. 3D design is under completion.

Quad-Quad Assembly

Quad-Sext Assembly

Single sextupole

Summary

- FAIR is (one of the) greatest and important BINP collaborator in the history.
- Friendly and productive communications were established between two teams.
- In spite of many problems and particularly difficult present period, BINP does it best to fulfill all responsibilities.
- I propose to establish a FAIR-BINP coordination group (small enough, 5+5 or even less), which will have a zoom meeting every month (or once per two weeks) to discuss and solve current issues and problems.