

Results from engineering run: Commissioning of the three branches

Technical/General achievements

- All standard detectors tested with beam:
 - Beam intensity monitors, current grids, MWPCs, TPCs, scintillators, in total approximately ~ 30 detectors
- Data acquisition
- Particle identification in-flight
- Training with the new control system
- Optics visualization and steering and modification with LSA-Mirko and gicosyback

Experiments at the three branches

- HFS
 - DESPEC
 - Ar beam and Ar fragments
 - U beam and U fragments
 - Ion Catcher
 - U beam and U fragments
 - Isotope search
 - Test of experiment-specific active stopper
 - Energy loss measurements
 - Proof of principle measurement
 - Measurement at low magnetic rigidity
- Cave C
 - R3B: Ar beam and Ar fragments
- ESR via FRS
 - U beam was injected and stored in the ESR

FRS: Status of experiments

Experiment ID	Spokesperson	Ranking [A/A-]	Shifts granted		Shifts carried out 2018+19		Shifts carried out 2020	
			main	parasitic	main	parasitic	main	parasitic
S457	Itahashi, Kenta	A-	18	18			6	
S474	Plass, Wolfgang	Α	21	-			17	
S468	Pietri, Stephane	Α	14	8			33	
S469	Purushothaman, Sivaji	Α	-	12			11	
S459+ (S443, S459, S472)		А	9	-			7	
S482	Hornung, Christine	Α	9	-			8	

Highlights S459+: EXPERT and FRS Ion Catcher

Multiple use of the secondary beams for increased physics output and efficiency:

- In-flight reaction studies at central focal plane (EXPERT)
- Stopped beam experiments at final focal plane with "active stoppers" (masses, decays, ...)

EXPERT:

- ⁶⁹Br and ⁷³Rb produced in secondary reactions
- Life-times determined by tracking residual particles of in-flight-decays
- Properties of ⁶⁹Br,⁷³Rb are of interest for understanding the rp-process nucleo-synthesis
- ~10⁶ ions of ⁷⁰Br and ⁷⁴Rb impinged on the secondary target → ~80 and ~40 events of 1*p*-decays registered in-flight of ⁶⁹Br and ⁷³Rb, respectively

ION CATCHER:

- Ion Catcher is used as active beam stopper, 'reusing' part of the beam that went through EXPERT
- Mass tagging of secondary beams
- Measurements focused on A~70 n-deficient isotopes (planned branching ratio measurements in this region were hindered by the CSC RF-Carpet problem)
- First direct mass measurement of ⁶⁹As, mass of ⁷⁰Se measured with +/-3 keV → best achieved mass accuracies sofar

Highlights S474: Test for the LEB and mass measurements of below ¹⁰⁰Sn

- Detector tests for the Low-Energy Branch of the Super-FRS
- Test with very thick targets making optimum use of two-step reactions to increase yields
- Technical difficulties with an essential extraction element in the stopping cell (RF carpet) at the beginning of the experiment → mass measurements could be performed for about 2 shifts only
- First mass measurement of ⁹³Pd (σ_{prod} ~ 9nb only!)
 Combined with one-proton decay energy this result helps to resolve the long-standing puzzle of the two-proton decay from the (21+) isomer in 94-Ag.

Timo Dickel for the Super-FRS Experiment Collaboration NUSTAR week GSI, September 28 – October 1 2020

Experiment

Highlights S468:

1,050 MeV/u ²⁰⁸Pb beam (~5E8/s) on Be target

New isotope search below ²⁰⁸Pb

- Regions of interest: ¹⁹³W, ¹⁹⁰Lu, ²⁰⁵Au
- FRS:
 - \rightarrow production, separation, ID, cross sections
- Ion Catcher
 - \rightarrow direct mass measurements
- Active stopper (Si detectors) and LaBr₃ $\rightarrow \beta$ -decay half-life measurements

Preliminary results

- > 15 new isotopes between 68 Er and 76 Os
- > 5 new masses

beta lifetime analysis started

Part of ID plot of ¹⁹⁰Lu setting:

→ in red the last known isotope

→ To claim discovery 3 counts

➔ Work ongoing to estimate

of this element

are needed

background

190Lu setting, preliminary plot

Highlights S482: Mean range bunching

Experiment

- Ion optical method to stop many different species *simultaneously* in an detector
 → efficient data taking
- Region of interest: n-deficient lanthanides
- Successful mass tagging of ¹⁴³⁻¹⁴⁴Tb with the MR-TOF-MS

Preliminary results

- > 12 new masses
- > 10 improved masses
- beta lifetime analysis started
- few new isotopes identified (t.b.c.)

Highlights S469: Slowing down of heavy ions in gases and solids

- Accurate energy-loss and charge-state distribution measurements of ²⁰⁸Pb ions in various gases and solids in the energy range 35...280 MeV/u
- The gas-solid difference according to Bohr-Lindhard theory has been clearly observed at kinetic energies of 100 MeV/u and below

- The results contribute to a better knowledge of the atomic interaction of ions penetrating matter
- Improved computer codes and more accurate isotope separation will be the direct application

- S511: FRS developments with beams for NUSTAR
- U316/S479: Test of calorimetric low-temperature detectors (CLTDs) at intermediate ion energies
- S526: Direct mass measurements of heavy N=Z and N=Z-1 nuclides
- S530: Fission isomer studies with the FRS
- S533: Ion-beam therapy with positron emitters
- S484: Hypernuclei
- S490: η'-mesic nuclei

S511: FRS developments with beams for NUSTAR

The NUSTAR Collaboration needs to continue to perform world-wide unique and competetive experiments in FAIR Phase-0 and beyond.

One key is to...

...increase the "useful intensity" for experiments

- to optimize coupling SIS-18 and FRS
- to increase the transmission of secondary beams
- to further increase the reliability of the FRS
- to upgrade and develop new detectors and hardware for increased performance (rate, resolution, tracking)
- to train people on the reliable use of the FRS Standard Equipment

... apply the many scientific-technical developments that were performed in recent years

ion optics, detectors, DAQ readout, etc. ...

• ...and test them with beams and apply to NUSTAR experiments!

10

S511: FRS developments with beams for NUSTAR

Performance improvements and R&D work with heavy-ion beams:

• 1) Coupling SIS-18 with FRS: increase of the "useful" primary-beam intensity

- a) micro-spill structure: **gain factor ~ 1.3 ... 4**, measurement / optimization up to highest SIS-18 intensities
- b) macro-spill structure: gain ~ 10...20%
- c) further transmission improvements (SIS to FRS target): first quantitative measurements needed

2) FRS improvements

- a-c) ion optics, improved diagnostics, quantitative measurements (goal: transmission increase for all 3 branches, e.g. main branch: a gain factor ~ 2.5 is immediately possible)
- d) standard detectors (for particle identification and beam tracking: Sci-TOF, Music-DE, TPC-XX'YY')
- e) i) new, radiation-hard detectors for TOF: liquid Cerenkov radiators, multiple read-out PMT's, high rate
- f) data acquisition (gain factor of 2...4 expected by block transfer mode)
- g) mass tagging: redundant ID (confirmation) for light ions (A~30...70), equipment tests (degrader)
- 3) Preparations for high-intensity operation: tests of software and controls for...
 - increased reliability, quick and reliable recall of settings, integration of simulations, failsafe operation
- 4) Development & training of the NUSTAR Beam Team: dedicated expert team for all expt.'s
- 5) Detector tests for the Super-FRS

U316/S479: Test of calorimetric lowtemperature detectors (CLTDs)

CLTDs for UNILAC energies:

 $\Delta E/E \sim 10^{-3}$ even for uranium \rightarrow Mass identification via E/ToF determination

CLTDs for SIS-18 energies:

Saphire crystal, 10x10x10 mm³,

(stop ~150 MeV/u Ni ions)

1. Motivation:

- CLTDs for heavy ions have been tested and applied for UNILAC and low ion energies (P.Egelhof et al.)
- Goal for NUSTAR experiments: development of large arrays of CLTDs for UNILAC and SIS energies
- Tests only possible with heavy ion beams

2. Present status:

- Several prototype detectors ready for testing
- Setup can be installed at X7 and at the FRS

3. Beam request:

- At SIS-18 (FRS): very heavy ions (Au/Pb/Bi, U), at UNILAC (X7): ditto, and also C
- Parasitic (beam sharing with other experiments possible), energies as available, count rate demands are rather low (<10³/ sec.)

For U316: 27 shifts For S479: 18 shifts

S526: Direct mass measurements of heavy N=Z and N=Z-1 nuclides

Nuclear forces and isospin symmetry

- · Investigate isospin-symmetry breaking forces for heavier nuclei
- Mirror displacement energies (T=1/2) for A>70 for the first time
- Triplet displacement energy (T=1) for A=70 for the first time
- Resolve discrepancy in super-allowed beta decay $\mathcal{F}t$ value for ⁷⁰Br

P. Baczyk et al., PLB 778 (2018) 178.

J.C. Hardy and I.S. Towner, PRC 91 (2015) 025501.

Neutron-proton (np) interactions and Wigner energy

• Study Wigner effect and np pairing for heavier nuclei A.S. Lalleman et al., Hyperfine Interact. 132 (2001) 315.

Nuclear structure and isomers

- Region of strong deformation and changing shapes around ⁸⁰Zr (study separation energies)
 C.J. Lister et al., PRL 59 (1987) 1270.
- New isomers and isomer studies, e.g. (7⁺), (21⁺) isomers in ⁹⁴Ag, predicted high-spin isomer in ⁸⁴Mo (DESPEC proposal by M. Gorska et al.)

Nuclear astrophysics

- Uncertainties of rp and vp processes (light curve, abundances)
- Possible formation of Zr-Nb cycle in rp process

H. Schatz et al., Phys. Rep. 294 (1998) 167.H. Schatz et al., Astrophys. J. 844 (2017) 139.

S526: Direct mass measurements of heavy N=Z and N=Z-1 nuclides

- Similar mode as for S474
- Simultaneous measurement of N=Z, N=Z+1, and calibrant, or N=Z-1, N=Z, and calibrant
- Expected mass uncertainty: 2...30 keV
- Assumed sensitivity limit: 10 events in 1 day
- Experiment also important for the Low-Energy Branch of the Super-FRS (detector development, experiments)

S530: Fission isomer studies with the FRS

(Superdeformed) second minimum in potential energy surface appears in actinides

 \rightarrow fission isomers

Ideal testing ground for strongly deformed low-spin nuclei and shell corrections in very heavy systems

Studies in the past by n, p, d, α -induced reaction;

Disadvantages:

- 1. Huge prompt fission background
- 2. Low excitation energy and population probability (~ µbarn)

3. Challenging to get targets to study U and Np

H. J. Specht, et al., Phys. Lett. B. 41, 43-46 (1972).

15

P. Thirolf, D. Habs, Prog. Part. Nucl. Phys. 49, 325-402 (2002).

S530: Fission isomer studies with the FRS

16

For implantation rate of 1kHz and a very conservative population of 10⁻⁶ the expected detection rate of fission isomers is:

Fast SCI:FRS Ion Catcher:AIDA:few per minute1 per hour (1% detection efficiency)1 per hour (kHz rate capability)

S533: Ion-beam therapy with positron emitters

Limitations of PET imaging with stable beams

- Non-matching activity and dose distribution
- weak PET signal
 - PET emitters are produced by projectile and target fragmentation

- Measured positron emitter activity distribution and irradiation dose distribution
 - PMMA target irradiated with ¹H, ³He, ¹²C, and ¹⁶O ions

Europear

Research

Counci

erc

Activity and dose are normalized to their respective maximum

Fiedler et al., In Ion-beam therapy (pp. 527-543). Springer, Berlin, Heidelberg.

A way forward? Ion beam therapy using short-lived, positron-emitting isotopes

Timo Dickel for the Super-FRS Experiment Collaboration NUSTAR week GSI, September 28 – October 1 2020

17

Timo Dickel for the Super-FRS Experiment Collaboration NUSTAR week GSI, September 28 - October 1 2020

S533: Ion-beam therapy with positron emitters

Major goals:

- 1. Range and range straggling in water with PET
- 2. Stopping power, energy-loss straggling and angular straggling
- 3. The total interaction and nuclear charge-changing cross-section
- Comparison: PET image vs. distribution measured with FRS event-by-event PID system
- The FRS gives control on the distributions of energy and position using degraders

Fiber detector

The status of WASA preparation

- Mini drift chamber: DONE
- Superconducting magnet: almost READY for experiments
 - ✓ L-N2 temperature in March 2020
 - Partially L-He temperature in June 2020
 - ✓ Full cooling at L-He tempretature in August 2020
- Time-of-Flight Barrel Upgrade: in progress, by end of 2020
- Scintillating fiber det.: Mass production completed, Commissioning in progress
- Electronics for fiber detectors: in progress, by end of 2020
- New holding structures: in progress, by Q1 of 2021

Mini drift chamber

Design of new holding structure

WASA-FRS test experiment with proton beam (June 5-7, 2020)

 Thus, the feasibility of the new experimental concept of forward high-resolution spectroscopy with WASA@FRS (i.e.: FRS in combination with decay-particle detection by WASA) has successfully been demonstrated!

S484: Hypernuclei

Physics motivations:

- Confirmation of the existence of the nnA bound state formerly observed by the HypHI experiment at GSI
- Confirmation of the short life of hypertriton

The world situation: **very hot topics** in the few-body physics

- InnA state
 - ✓ A new experiment performed at the J-Lab in 2019
- <u>Hypertriton</u>
 - ✓ Lifetime measurements by STAR at RHIC and ALICE at LHC
 - Proposed experiment for lifetime measurement at J-PARC (pilot experiment with ⁴_AH was successful)
 - ✓ Proposed experiment at ELPH/Tohoku Univ.
 - Binding energy by STAR at RHIC (Nature Physics 16, 409–412 (2020))

S484: Hypernuclei

Developments and new facility for WASA-FRS

- Advanced Monte Carlo simulations: RIKEN + CSIC + GSI
- New analysis and machine learning: RIKEN + CSIC
- Scintillating fiber detectors: RIKEN
- Electronics development: GSI + RIKEN
- New computing farm at RIKEN
 - ✓ 1400 CPU cores
 - ✓ 32 GPGPU cards (RTX 2080Ti + Tesla K40, 273910 CUDA cores)
 - ✓ 400 T byte storage

New participating institutions

- High Energy Nuclear Physics Laboratory, RIKEN, Japan T.R. Saito + 4 staff researchers, 3 postdocs, 3 PhD students
- Hypernuclear Physics Group, Lanzhou University, China T.R. Saito + 3 faculty members, 1 master student
- Hypernuclear Physics Group, CSIC, Spain
 C. Rappold + 1 PhD student
- Group of Obertelli, TU Darmstadt, Germany A. Obertelli + 1 postdoc

S490: n'-mesic nuclei

WASA: Installation and Removal Schedule

WASA: Removal Options

Option 1:

- \circ Dismount only Fiber detectors => 2 days
- FRS-Sci, TPCs, slit, degrader can be placed in air, for the following experiments.

=> 2--5 days

 Acceptance is limited by 6 cm diameter of WASA-MDC pipe.

Option 2:

• Dismount Fiber detectors, MDC, PSB,

Endcap => 2 weeks

• FRS- Sci, TPCs, slit, degrader can be placed in air, for the following experiments.

=> 2--5 days

 \circ No cut in acceptance due to WASA.

Space to install FRS- Sci, TPCs, slit, degrader (in Option 1 and 2)

Remove whole WASA and install the FRS-standard
 S2 chamber back (opening roof required) => 3 months

Collaboration photograph "end of the run" in times of Corona virus

0

Zoom Meetings

A great "thank you" to all collaborators and thank you for your attention !

Timo Dickel for the Super-FRS Experiment Collaboration NUSTAR week GSI, September 28 – October 1 2020

26