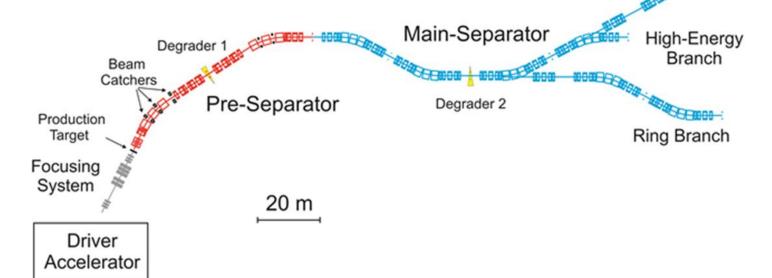


Low-Energy Branch



Energy Bunche

Magnetic Spectrometer

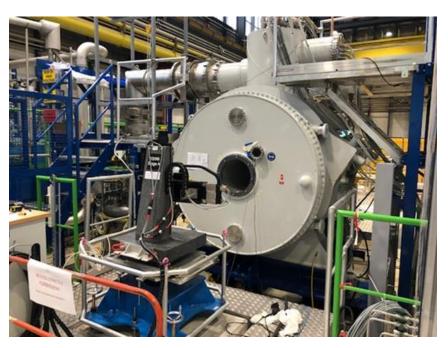
Outline

- 1) Status Technical Sub-Systems
- 2) Civil Construction
- 3) Schedule impact: Covid-19, Beam time
- 4) Summary

sc Magnets (Testing@CERN, status)

K. Sugita

A. Chiuchiolo


G. Golluccio et al.

Feb. 20, 2019

- Collaboration between CERN and GSI
- Cold (4K) testing of the SC magnet modules
- Test facility including 3 test-benches set up
- Facility is operated by GSI personal Team

Milestones in 2019

- Commissioning of the facility and devices
- Training of the Team
- Feb. 20, 2019: Arrival of the first multiplet
- May. 7, 2019 Transport to test bench
- July 10, 2019 First cool-down start
- Sept. 18, 2019 Powering Start (quadrupole)
- Dec. 6, 2019 Magnetic Measurement

 Campaign for quadrupole finished
- Dec. 16, 2019 Start warm-up (winter break)
- Jan. 23, 2020 Multiplet warm
- Feb. 7, 2020 Start of second thermal cycle

sc Magnets (Testing@CERN, results)

K. Sugita

A. Chiuchiolo

G. Golluccio et al.

cool down trial

magnet min. temperature [K] 2 weeks break

53 days

Phase 1: to 80 K

7/11/2019 12:00:00 AM

thermal shield blocking

8/5/2019 12:00:00 AM

(increase pressure drop, disappeared)

restart of

cool down

Phase 2: 80 K to 4 K

water condensation

Helium level gauge (pin connection swapped

Liquid helium filling @ 4K

in beam pipe

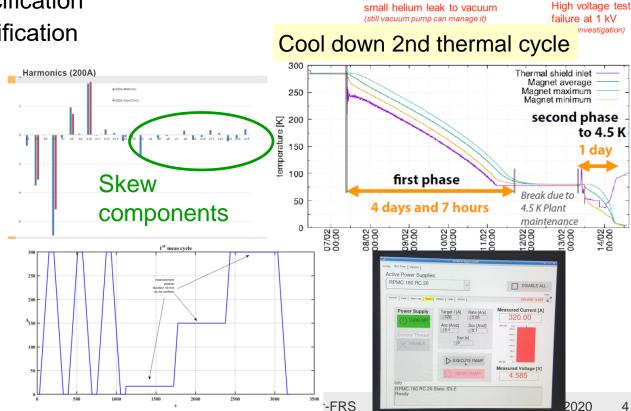
8/25/2019 12:00:00 AM

Cool down 1st thermal cycle

CL cool down

QDS commissioning


Powering


! Cool-down rate of ≈1.9 K/h achieved

- ✓ Maximum Current (+7%) achieved so far one quench occurred at 2/3 of I_{max}
- ✓ Specified ramping rate of 2.5 A/s achieved
- ✓ Magnet pre-setting cycle verified
- ✓ Magnetic axis within specification
- ✓ Field quality ≈within specification

.. COVID-19 shutdown

... but early startup!

sc Magnets (SC Mutiplets, Overview)

H. Müller, E.J. Cho et al.

Series production

Scope:

8 short multiplets, 24 long multiplets

➤ QS or QT, including correctors

Main characteristics:

iron dominated, cold iron, common He bath

warm beam pipe (38 cm inner diameter)

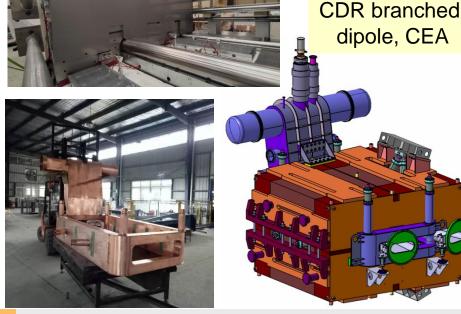
individual powering, max. current <300A

		02/20			Ouadrisole Misnet Assembly	Sextupole Magnet Assembly	Quadrupole Yoke Packing	Sextupole Yoke Packing	Quadrupole Impregnation	Sextupole impregnation	Supplied Winding
July 2020	Multiplet Assembly	Quadrupole Magnet Assembly	Sextupide Magnet Assembly	Quadrupole Yoke Packing	Sextupole Yoke Packing	Quadrupole Impregnation	Sextupole Impregration	Quadrupole Winding	Sextupole Winding	/ 102	SN
		Fatto	Fatto	Fatto	Fatto	Fatto	Fatto	Fatto	Fatto		
September 202	Multiplet Assembly	Quadrupole Magnet Assembly	Sextupole Magnet Assembly	Quadrupole Yoke Packing	Sextupole Yoke Packing	Quadrupole Impregnation	Sextupole Impregnation	Quadrupole Winding	Sextupole Winding	/ 103	SN
			100%	100%	100%	100%	100%	100%	100%		,
October 2020	Multiplet Assembly	Quadrupole Magnet Assembly	Sextupole Magnet Assembly	Quadrupole Yoke Packing	Sext upole Yoke Packing	Quadrupole Impregnation	Sext upole Impregnation	Quadrupole Winding	Sextupole Winding	1 04	SN
		10	2 2			3 out of 4	100%	100%	100%	8	

Status / Schedule

- ✓ Contract closed 07/2015 (ASG, Genova)
- ✓ SAT FoS SM running
- > FAT FoS LM 03/20
 - shipment to CERN scheduled 04/2020
 COVID-19
 - shipment to CERN scheduled 10/2020
 About 6m delay

sc Magnets (SC Dipoles)


H. Müller, E.J. Cho et al. CEA Saclay

Scope

- WP 1: standard dipole incl. support
 - 3 units 11°, 18 units 9.75°
- WP 2: branched dipole incl. support
 - 3 units 9.75°
- Warm iron, SC coil, 50 to 60 ton
- Aperture ±190mm x ±70mm

Status standard dipole:

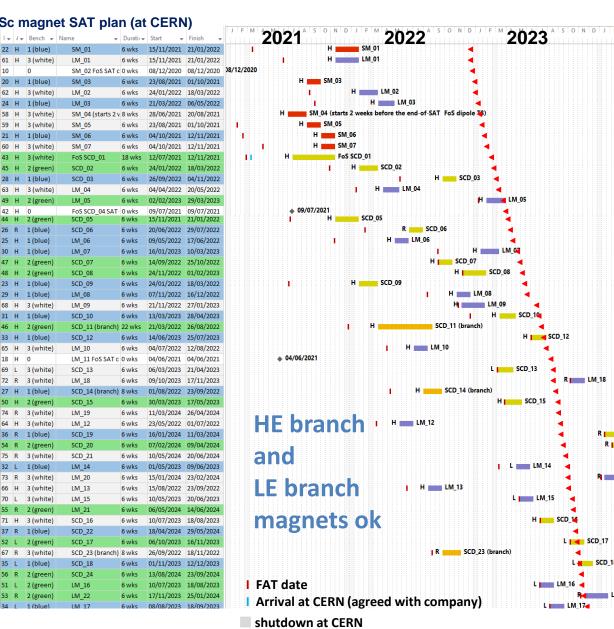
- ✓ Contract award Elytt (Sp) Feb. 2018
- ✓ FDR: 9 Oct. 2019
- ✓ FOS production running
- ? FAT of FoS expected 05/20 COVID-19
- ? Now shifted to 11/20 (about 6m delay)

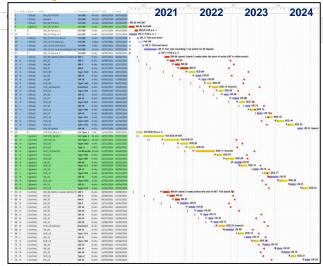
Status branched dipole:

- ✓ Design phase completed (CEA)
 - ➤ CDR, Spec, 3D Model released 03/19
- ➤ Contract closed 05/2020
- ➤ Kick-off done . → schedule agreed

Magnets Testing. Rescheduling after Covid-19 (Testing at CERN)

R LM_19


R _____ SCD_21


R LM_21

◀ Latest date for shipment to FAIR (according to actual installation plan - LCM)

R SCD 24

ASG data 14/09/2020 ELYTT data 09/09/2020

ring-branch magnets stay late relative to 'old' installation window

- K. Sugita
- A. Chiuchiolo
- G. Golluccio et al.

Local Cryogenics (Specs and Procurement)

F. Wamers,Y. Xiang et al

- √ Common Spec. released 09/2919
 - scope definition
- Component Specifications
 - √ Feed Box Spec. released
 - Branch Box Spec: Engineering Check
 - Warm Piping Spec: Draft version in review
- System Specifications (→ Installation)
 - Branches (T, P, M,...) Specs prepared
- In Kind contracts not yet signed.
- ✓ Collaboration contracts with BINP&WUST

WUST scope (incl. design and installation):

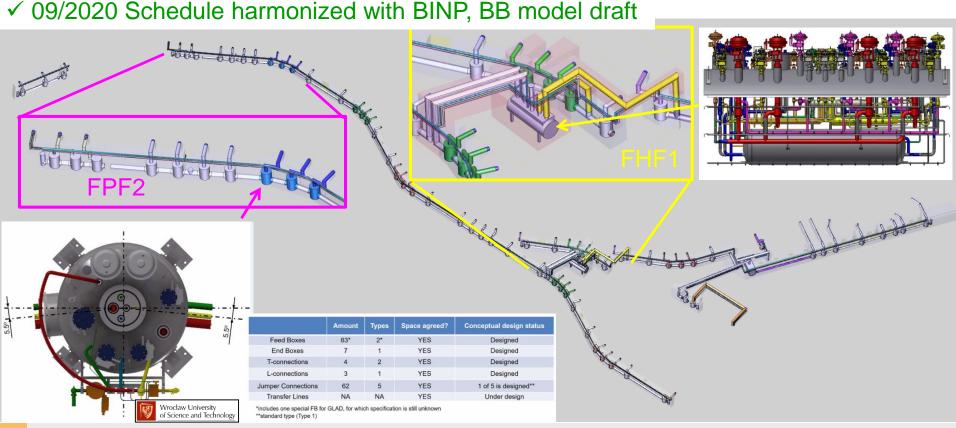
- Supervision of system- and safetydesign
- 45 Feed Boxes (FBs)
- all FB-interconnecting ,short 4-TLs
- all Jumper Connections (JCs)
- 7 End Boxes (EBs)

BINP workshop 11/2019:

Agreement on Scope and Cost Sharing between WUST and BINP

BINP scope (incl. design and installation):

- Branch Box (BB) and its ,long' 4-TLs
- all Warm Piping and 1-TLs
- 18 Feed Boxes (manufacturing only, design and installation by WUST)


Local Cryogenics (DMU and Design)

F. Wamers,A. Breidert et al

- 12/2019: First conceptual 3D model of Feed Box, by WUST
- 12/2019: First conceptual 3D model of Branch Box vacuum vessel, by BINP
- 02/2020: Update of the Local Cryogenics 3D model and installation space
 - WUST pre-design (new Dipole-FB concept, separate EBs, one FB per cryostat)

Local Cryogenics (Cryogenic Operation Modes)

F. Wamers,Y. Xiang et al

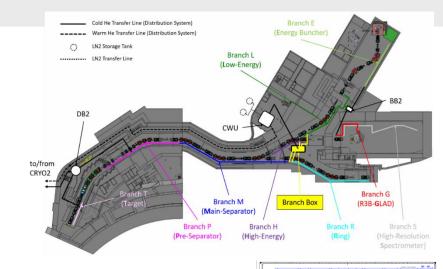
Cryogenic operation modes based on NUSTAR-experiment requirements:

- 1. Cryo-operation of Branches T, P, M, B
- Cryo + beam-operation of running experiment Branch (H, L, or R)
- 3. Cryo-preparation of next-scheduled Branch (beam operation of running Branch ongoing)

4. ... floating, warmup, quench, hazard, ...

5. ... various combinations...

Goal: High availability + flexibility for experiments!


√09/2020 CDR about 80% done

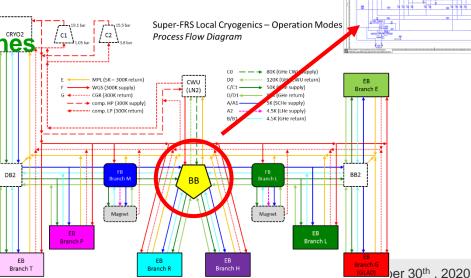

✓ Standardized feed boxes, jumper lines

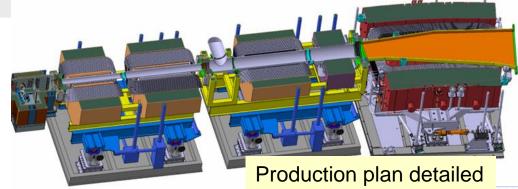
Table 1: Foreseen user (NUSTAR sub-collaboration) requirements for the Cryogenic (4.5 K) Operation of the Super-FRS Local Cryogenics Branches.

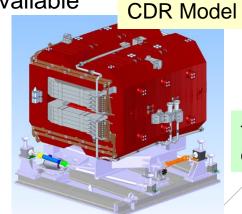
Explanations: (X^*) not all of the magnets in Branch X are needed. $(*^*)$ none of the magnets in this Branch are needed.

NUSTAR Sub-	Focal	Branch T,	Branch	Branch	Branch	Branch	Branch
Collaboration	Planes	P, M, B	H	L	E	G, S	R
SEC	FHF1:	Yes (M*)	Yes	No	No	No	No
	FLF3:	Yes (M*)	Yes (*)	Yes	No	No	No
	FLF6:	Yes (M*)	Yes (*)	Yes	Yes	No	No
HISPEC/DESPEC	FLF3:	Yes (M*)	Yes (*)	Yes	No	No	No
	FLF6:	Yes (M*)	Yes (*)	Yes	Yes	No	No
MATS/LaSpec	FLF6:	Yes (M*)	Yes (*)	Yes	Yes	No	No
R3B	FHF2:	Yes (M*)	Yes	Yes (**)	No	Yes	No
	FHF3:	Yes (M*)	Yes	Yes (**)	No	Yes	No
	FHF4:	Yes (M*)	Yes	Yes (**)	No	Yes	No
ILIMA, ELIse, EXL	FRF3:	Yes	No	No	No	No	Yes

Radiation Resistant Magnets

H. Leibrock, T. Blatz et al.




Scope:

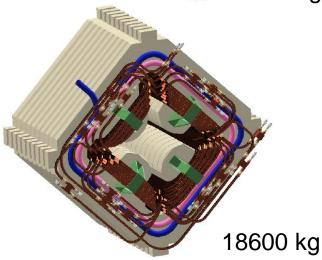
- NC magnets using MIC cable
- WP1: 3 dipole magnets
 (prototype dipole built and tested)
 09/2020 FDR progressing
- WP2: 3 quadrupoles & 2 sextupoles
- Dedicated support frame, designs available
- Remote connectors and alignment

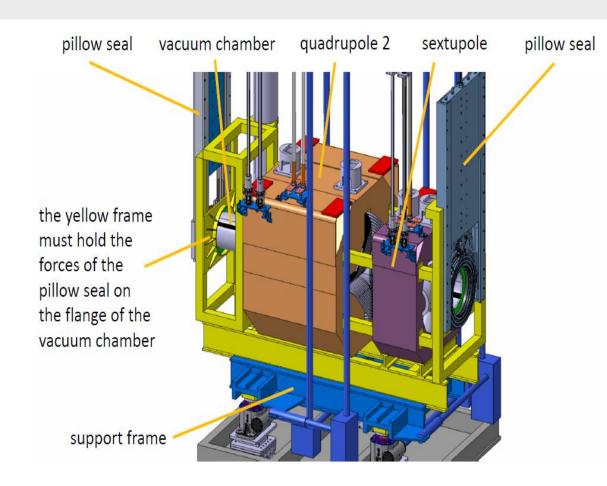
Status / Schedule

- ✓ WP1: CC signed 04/2019;
- ✓ CDR approved 02/2019
- ✓ MIC procured, in-house
- √ WP2: BINP is running R&D phase
 - ✓ research contract signed 09/2019
 - > conceptual design expected Q3/2020
 - ✓ decision on IKC 09/2020
 - ✓ CC with BINP Q3/20, model received
 - ✓ tender preparations started

technical realizable solution of coil design found

		56.7	98	_			
2.4.2.2.1	Quadrupole 1a	1	1.6 T/m	15.4 T/m	0.933	Ø 130	±1·10
2.4.2.2.1	Quadrupole 1b	1	1.2 T/m	11.8 T/m	1.244	Ø 180	±1·10
2.4.2.2.2	Quadrupole 2	1	0.6 T/m	6.1 T/m	1.200	380 × 240	±1·10
2.4224	Caustum alla 4		2.5.7/-2	24.7/2	0.500	4 202	±5·10


Radiation Resistant Magnets


H. Leibrock, T. Blatz et al.

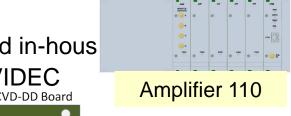
✓ BINP 09/2019-09/2020

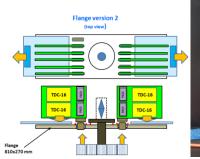
Rad. hard cable export restricted

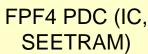
Tender can be iinitiated – Company cont. promising

Beam Instrumentation (some of the systems)

- C. Nociforo,
- Blatz,
- F. Schirru,
- O. Kiselev, et al.






Libera Hadron

- √ topic at BINP workshop (Nov 2019)
- ✓ design of TCR1 BPM by BINP existing
- aiming for CC with BINP
- ✓ full electronics delivered by Instrumentation Technologies (Slovenia)
- Particle detector Combination (PDC)
 - ✓ Double drive (IC, SEETRAM) designed in-hous
 - ✓ scCVD-DD under negotiation with CIVIDEC
 - ✓ CDR in preparation
 - in-beam test needed in 2021
- Drive control (LUND-Sweden)
 - IKC pending > 1 year ⊗
- Beam Stopper
 - ✓ specs approved (Jan 2010)
 - ✓ tender running
- plastic scintillators
 - back to Council Nov 2019 by Sweden ⊗
- Time-of-Flight (ToF-Silicon)
 - ✓ IKC signed 26.6.2020, kick-off 4.9.2020, CDR expected this year!

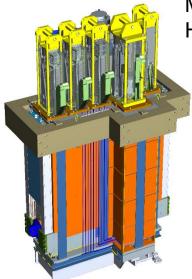
Target Area

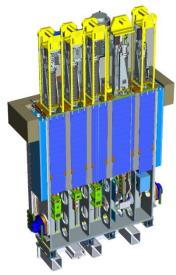
H. Weick. C. Karagiannis et al

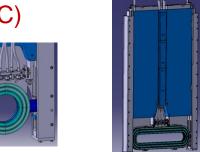
Target chamber & plug systems: 💞

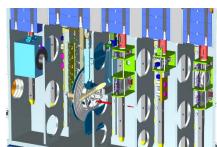
university of groningen

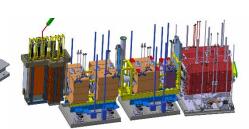
- Collaboration Contract with KVI-CART
- CDR revision done
 - cooling of chamber/detector ladder;
 - pillow seal / interface update
- FDR (=production drawings) received
- tender on manufacturing by GSI


Beam Catchers:


- no in-kind contract yet (issues with other IKC)
- Design by CMERI, CDR/FDR done,
- Tender (manufacturing) by India
- delays through Covid-19


Support Frames:

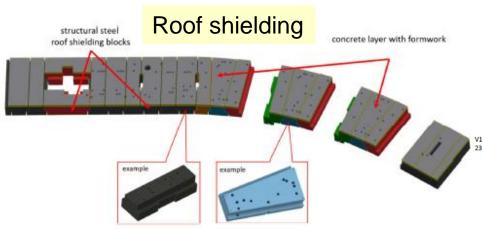

- 9 supports required; 'remote' alignment
 - > one support developed
 - ➤ 4 supports are scope of magnet delivery
 - ➤ 4 supports have to be tendered (Q4/2020)
- production drawing established

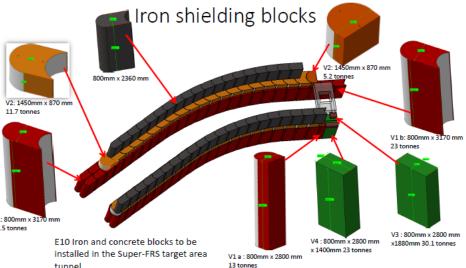


Target Shielding (Iron)

H. Weick,

A. Kratz

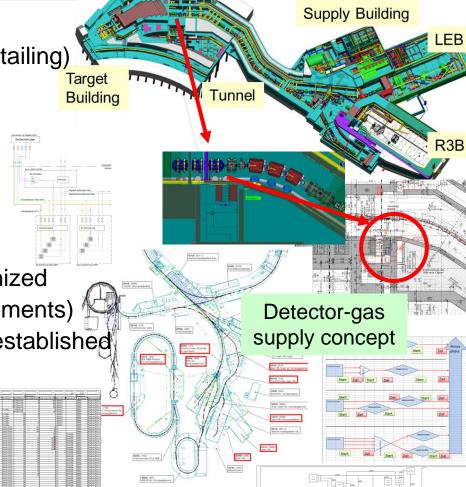

R. Knöbel et al



- Negotiation with in-kind partner failed
- WP 1: lateral iron shielding (early installation!)
 - ✓ Tender started 08/2019
 - ✓ Contract awarded 01/2020, including reproof provider: Walzengiesserei Coswig

 WALZEN-UND WALZEN-WALZEN-UND WALZEN-WALZE
 - > kick-off March 10/11, 2020
 - CDR 06/20, FDR just ongoing
- WP 2: roof shielding in approval proces
 - Specifications released
 - > Tender or IK?

Civil Construction (FAIR South / Super-FRS)


A. Bergmann, M. M. Schmidt

S. Pietri et al

- ✓ FAIR south area construction start
- very final building changes (component detailing)
- formwork planning running
- Building services planning running
 - Cable planning (CDB) 'finalized' (including connectors) cable routing planning outsourced;
 - → cable tender
 - electrical power / cooling power harmonized
- Detector-gas system (Super-FRS + Experiments)
 - Specs established, full list of gas lines established installation space planning ongoing

Electrical power Cooling power

	lfdN	Subprojekt	Geb.,neu	Geb., alt	P_H ₂ O (2013)	P_H ₂ O (2018,25*)	P_H ₂ O (2018,18°)	P_H ₂ O (2018,6*)	Δ_H_2O	P_Luft (2013)	P_Luft (2018)	Δ_{Luft}
	1	NUSTAR	K0308A	G006	180,00 kW	180,00 kW	47,74 kW	0,00 kW	47,74 kW	295,00 kW	226,22 kW	-68,78 kW
	2	NUSTAR	K0314A	G17.2	50,00 kW	0,00 kW	3,44 kW	0,00 kW	-46,56 kW	28,60 kW	22,20 kW	-6,40 kW
	3	NUSTAR	L0317A	G0068	342,00 kW	93,38 kW	363,50 kW	90,00 kW	204,88 kW	178,00 kW	440,26 kW	262,26 kW
	4	SFRS	K0410A	T103N+S	260,78 kW	425,00 kW	234,80 kW	0,00 kW	399,02 kW	405,79 kW	396,20 kW	-9,59 kW
	5	SFRS	L0321A	G006A	1164,00 kW	194,15 kW	282,70 kW	0,00 kW	-687,15 kW	560,50 kW	428,03 kW	-132,47 kW
	6	SFRS	L0516A	G018	1742,90 kW	1759,80 kW	21,50 kW	0,00 kW	38,40 kW	585,40 kW	600,47 kW	15,07 kW
Sci					3739,68 kW	2652,33 kW	953,68 kW	90,00 kW	-43,67 kW	2053,29 kW	2113,38 kW	60,09 kW

M.M. Schmidt FAIR ES S **Pre-Assembly** V. Ricciardi et al (example: SC Magnets) planned target-hall storehouse (south exit) Working Processes Pre-assembly Units - sc short multiplet 8. 10. 11. 15. 16. Handling /Transport area Delivery expected in Mai 2020 Lean Construction Management (LCM) workshops External company Arbeitsanweisung 2 Time planning 1st SM Q2/2020 1st LM Q4/2020 escape route 1st CR Dipole Q1/2021 Technical Work Instructions
Technical Work Instructions SFRS Pre-Assembly Vorwärtswand appr size of SFRS Long Multiplet / Long Dipole (7m x 3m) (weight: 52t) CR Pre-Assembly temporary storage: ~ 350 m2 temporary storage: ~ 250 m2 target-hall 7 dipoles delivered before access to building (60 t) layout pre-assembly 15 quads-groups delivered before access to building (22 t)

Impact analysis on project schedule beam time: 2021-23

		W	ork	at FRS				
		Jan-June	9	July-Dec				
Knoebe	l; Ronja	100%		0%				
Mukha;	Mukha; Ivan		ukha; Ivan 100%			0%		
Amjad;	Amjad; Faraz			0%	Ob.!((
Kazants	eva; Erika	50%		0%	Shift crew m			
Startup-Pl ▼	ActivityCode	e ▼ PSPCode	*	Task Name	▼ S O			

Shift crew members, further experts on call!

Kazantseva, Erika		50%	0%					
						2022	2023	
Startup-Pl ▼	ActivityCode ▼	PSPCode ▼	Task Name	SOND	J F M A M	$J \mid J \mid A \mid S \mid O \mid N \mid D$	J F M A M J J A S O N D	J F M A
Exp Ph. 1a /	S006.M10	2.4.11.1	Beam Catcher N/110	. Deliv	ery sch	edule	(
Exp Ph. 1a /	S006.M10	2.4.11.3.1	Target chamber	. Den	Cry Scri	icadic	• ·····•	
Exp Ph. 1a /	S006.M10	2.4.11.3.2	Graphite wheel assembly	• ··				
Exp Ph. 1a /	S006.M10	2.4.11.3.3	Safety/transport container - Flas	k			•	••••
Exp Ph. 1a /	S006.M10	2.4.11.4.1	Iron shielding - Lateral steel bloo	•				
Exp Ph. 1a /	S006.M10	2.4.11.4.2	Iron shielding - Steel slabs (roof)				* ·····•	
Exp Ph. 1a /	S006.M10	2.4.11.4.3	Iron shielding - Remaining steel	(•
Exp Ph. 1a /	S006.M10	2.4.6.2.1	Target ladder			• ···	•••••	
Exp Ph. 1a /	S006.M10	2.4.6.2.5	Beam Stoppers			•	•	
Exp Ph. 1a /	S006.M10	2.4.7.1.12.1	Diagnostic chamber (different size	Z			•	
Exp Ph. 1a /	S006.M10	2.4.7.6.1	Robot Handling			•	•	
					i .		i	i

IMPORTANT: only delay on procurement of components estimated; delay on pre-assembly not estimated No impact on: sc/nc Magnets & testing, Local Cryogenics, better planning allows for further optimizing

- Very rough estimation based on availabilities Sizable shifts without optimizing
- Would benefit from better resource leveling → proposal presented 14.7.2020
- Shutdown planning as part of CAMPUS Master schedule separately

- Test FoS sc magnets at CERN
 - CERN allowed an early start of test facility after Covid lockdown → qualification of sextupole successfully done
 - Test methodology established
 - Commissioning of the 2nd testing bench started; necessary for testing the FoS sc dipole
- Series production multiplets and production FoS dipoles on track again (after Covid lockdown)
- FAT FoS long multiplett successfully completed (31/07). Arrival at CERN by mid of October.
- Contract for sc branched dipoles signed with Elytt, Bilbao, Spain (4th May). Kick-off meeting done; combined schedule standard + branched agreed.
- Lateral iron shielding: FDR this week. Production starts.
- **BINP workshop** (25-29 May): priorities clarified, nc multipole conceptual design presented, branch box conceptual design presented, several vacuum packages running
- BINP R&D NC multipoles completed (27th July)
- Local Cryogenics: FAIR-WUST Co-operation Agreement und Implementing Agreement signed on August, 4th. Implementing Agreement GSI-WUST (Poland) signed (31st Aug). Lots of consolidation steps in progress. Production plan in preparation.
- Beam Stoppers: Invitation to tender closed, 4 bidders invited to submit an offer
- **ToF detectors**: Contract signed (26th June). Kick-off meeting done (4th Sept), schedule agreed
- Production plans for SEM detectors and for detector ladder done (27th May) with HIP, Finland
- Shielding Flask (IK FI, SW): common tender Super-FRS + p-bar; negotiation with 3 bidders

Summary

- + Major components are contracted and in design and/or construction phase
 - in particular SC magnets and Testing
 - lateral iron shielding
 - (agreement of scope & sharing local cryogenic WP)
- quite some issues with closing in-kind contracts and/or resign of Eol
 - Local Cryogenics, Beam Catchers
 - some WP concerning beam instrumentation
- Civil Construction main topic:
 - FAIR south area construction started
 - Building services revisions (via FSB)
 - Detector-gas planning running (Super-FRS plus all Experiments)
- Pre-Assembly planning running and/or preparation for first component preassembly on site

Thank you for you attention!