

NUSTAR Collaboration Report

Wolfram Korten
IRFU - CEA Paris-Saclay

NUSTAR Week 2020

Darmstadt, Germany, September 30th, 2020

NUSTAR Day-1 and Phase 1

2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
Super	r-FRS								
	uction a	nd instal	lation						
						commi	ssioning		
								full ope	ration
NUST	AR cav	es					せ、		
		civ	il constr	ruction			Start		
NUST	AR exp	eriment	S				Early		
constru	ction/op	eration "	outside"	FAIR (GSI and	ext.)			
				ins	stallation				
					CO	mmissio	oning		
							operatio	n at FAI	R
		Pha	ise (0			P	has	se 1

NUSTAR status for FAIR committees

	NUSTAR sub-system	TDR	Cost [k€ 2005]	Funding	Construction	Date completion	Test/ Commissioning
	LEB infrastr.		1,806			06/2023	
	HISPEC/DESPEC		10,886			03/2024	
	MATS		1,173			08/2024	
y 1	LaSpec		253			05/2021	
Day	R3B		17,788			03/2023	
	ILIMA		1,099			12/2023	
		92%	33,004	94%	59%		40%
		value weighted	33,004	secured	value weighted		value weighted
Chang	e since report 2020-l	+4%					+1%

Funding status (Day one)

- secured/expected FAIR
- secured external
- Eol
- Common Fund
- to be assigned

- funding (secured and expected) from:

 (FAIR members/associates in bold face)
 - Bulgaria
 - Canada
 - Finland
 - France
 - Germany
 - Hungary
 - India
 - Israel

- Netherlands
- Poland
- Romania
- Russia
- Slovenia
- Spain
- Sweden
- United Kingdom

Common Fund

> to be defined

Status: November, 2019

Infrastructure items for Common Fund

- Several components required for the Day-one configurations have been identified by the NUSTAR Collaboration as common infrastructure items.
- These items cannot be taken over by partner institutes.
- Update is in progress, should be finalized for the next RRB

PSP	Name	cost (2005) [k€]
1.2.1.2.4	Detectors and slit system in front CSC	135.7
1.2.1.2.5	Beam line to MATS-LaSpec hall	154.0
1.2.1.7	Beam line to MATS RFQ	200.0
1.2.2.3.5	HISPEC/DESPEC Mechanics	10.4
1.2.2.5.1	Safety measures	96.4
1.2.5.1.1.3.3	Valve box GLAD	128.1
1.2.5.1.1.3.4	Infrastructure magnets	200.0
NUSTAR Comr	924.6	

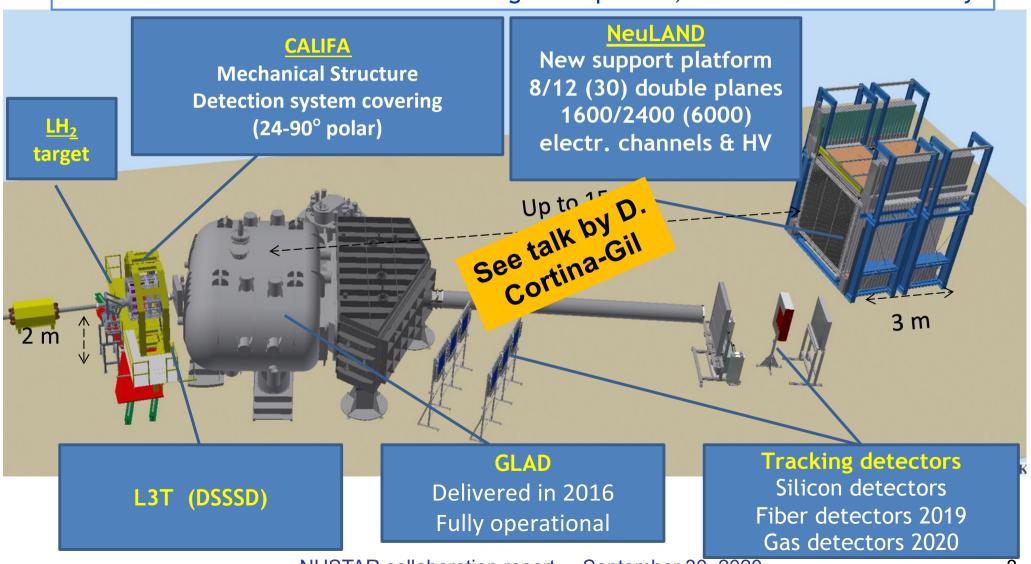
NUSTAR Phase-0 experiments (as reported to JSC in May 2020)

Beamtime in 2020 strongly influenced by Covid-19 epidemy

- Safe working conditions possible (limited number of persons onsite etc.) ?
- Experimental set-up complete and team sufficient (locally and remote) ?
- Beamtime schedule relaxed (increased set-up time, extensions possible)
 - → Spokespersons and local teams had to decide whether the experiment could be performed
- ~50/70% of the NUSTAR experiments at SIS18/UNILAC could be performed
- Remote near-line analysis pursued and controlling of certain set-ups
- Extended commissioning of all NUSTAR equipment incl. FRS/ESR
- Additional beam time may still be needed (→ G-PAC requests)
- Expected "backlog" for 2021+: 52 days at SIS18, 23 days at UNILAC
 - → Severe constraints for new NUSTAR proposals

NUSTAR-FRS experiments 2020

Experiment	Title	Beam	Begin	End	Rol	Destination
S467 (Paschalis) NUSTAR-R3B	Single-particle structure of neutron-rich Ca isotopes: shell evolution along Z=20	650 MeV/u 86Kr	21.2.	25.2.	Ca isotopes	Cave C
S474 (Plass) NUSTAR-SEC	Detector tests with the prototype of the CSC for the Super-FRS and direct mass measurements of neutron-deficient nuclides below 100Sn	6001155 MeV/u ¹²⁴ Xe	27.2.	4.3.	⁸⁹ Ru ⁹⁸ Cd	HFS
S459+ (Chudoba, Mukha, Mardor) NUSTAR-SEC	Proton radioactivity studies with EXPERT, and online-test of a novel method for measuring β -delayed neutron emission probabilities	972 MeV/u ¹²⁴ Xe	4.3.	9.3.	⁷⁰ Br	HFS
S480 (Regan) NUSTAR-DESPEC	Structure of the heaviest N=Z nuclei: seniority transitions and EM transition rates in 94Pd	980 MeV/u ¹²⁴ Xe	9.3.	16.3.	⁹⁴ Pd	HFS
E127 (Reifarth) NUSTAR, APPA	Measurements of proton-induced reaction rates on radioactive isotopes for the astrophysical p process	561 MeV/u ¹²⁴ Xe	18.3.	23.3.	¹¹⁸ Te	ESR
E121 (Litvinov) NUSTAR-ILIMA, APPA-SPARC	Measurement of the bound-state beta decay of bare 205Tl ions	590 MeV/u ²⁰⁶ Pb	25.3.	6.4.	²⁰⁵ TI	ESR
S468 (Pietri) NUSTAR-SEC	Search for new neutron-rich isotopes and exploratory studies in the element range from terbium to rhenium	1050 MeV/u ²⁰⁸ Pb	8.4.	21.4.	¹⁹³ W, ¹⁹⁰ Lu	HFS
S482 (Hornung) NUSTAR-SEC	Mean range bunching for experiments with stopped beams	1050 MeV/u ²⁰⁸ Pb	21.4.	24.4.	¹⁴⁰ Tb, ¹²⁶ Pm	HFS
S452 (Witt) NUSTAR-DESPEC	The Oblate-Prolate Shape Transition around A~190	1050 MeV/u ²⁰⁸ Pb	25.4.	27.4.	193 W	HFS
S469 (Purushothaman) NUSTAR-SEC	Accurate slowing-down measurements of heavy ions in gases and solids in the kinetic energy range of (30 to 300) MeV/u with the high-resolution magnetic spectrometer FRS	35280 MeV/u ²⁰⁸ Pb	29.4.	2.5.	²⁰⁸ Pb	HFS


43 days of PAC-approved beamtime for NUSTAR-FRS experiments in 2020 (resulting in ~55 days of FRS running)

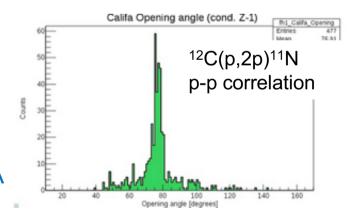
R3B in FAIR phase-0

Complete kinematics, fixed target experiment to study Reactions with Relativistic Radioactive Beams with high acceptance, resolution and efficiency

Commissioning for Phase-0 experiments

S444 R3B Detector Commissioning

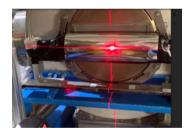
- AMS & LH2 target test:
 - original vacuum chamber failed;
 - new chamber available in April
 - LH2 target test postponed due to COVID-19
- CALIFA Barrel + Full frame installed
- New R3B gas tracking detectors

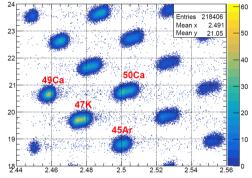


¹²C @ 500 A. MeV

Successful commissioning of R3BMUSIC, SOF MW's, TwinMusic and ToF (PID) and CALIFA

Experiments in 2020 (pre COVID-19)

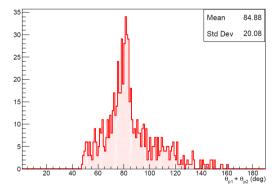

- S467 Single-particle structure of n-rich Ca: shell evolution along Z=20
- Goal: probe the quenching of spectroscopic factors as a function of isospin asymmetry, and establish the evolution of the shell structure at Z=20 and around N=28,30 and towards N=32

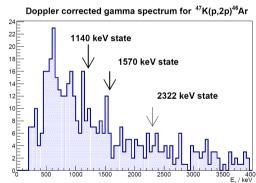

86Kr @ 580 A. MeV

Excellent performance of gastracking detectors (PID)

SofFrsData.fZ:SofFrsData.fAq

MAR'20

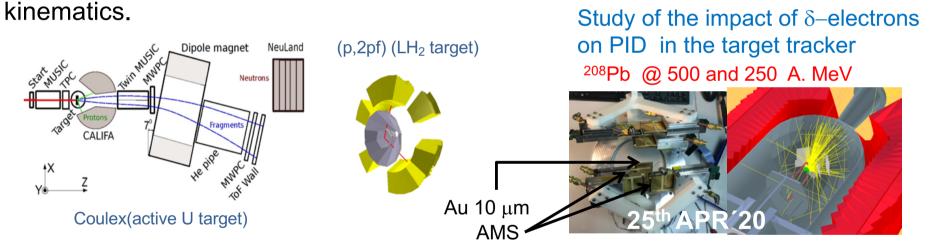




Preliminary (online) results

Excellent CALIFA performance in a huge dynamic range

⁴⁷K(p,2p)⁴⁶Ar p-p correlation



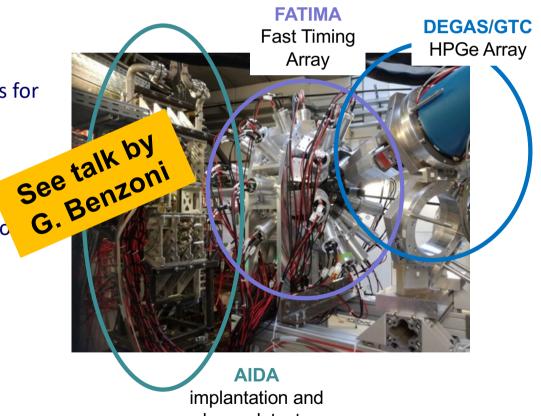
Further planned experiments in 2020

- S455 Fission studies (originally scheduled April-May)
- Postponed due to COVID´19, ready to run some weeks after end of lockdown

Goal: investigate the potential-energy surface and the dynamics of fission over a broad range in fissility and excitation energy, taking advantage of relativistic radioactive beams and the advanced SOFIA@R3B setup, using (p,2pf) and Coulomb excitation to investigate fission of unstable nuclei in inverse

HISPEC-DESPEC Setup for 2020

Spectroscopy & lifetimes of neutron-rich nuclei close to N=126

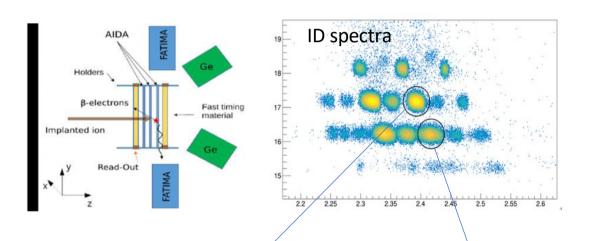

Ready for experiments (S452, S460 & S468): AIDA & DEGAS/GTC & FATIMA **DESPEC PHASE-0 INSTALLED AND UNDERGOING COMMISSIONING (in-house and outside GSI)**

• DESPEC 2020: up to 36 FATIMA LaBr3 detectors for fast-timing / isomer gamma spectroscopy.

 Gallileo triple Ge clusters in front ring for highresolution tagging.

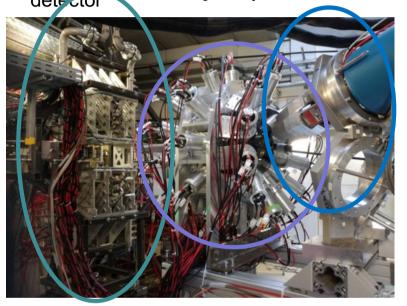
AIDA active stopper; pixelated silicon detector.

 Front and back of AIDA fast-plastic 'windows' for coincident fast-timing beta-signal.

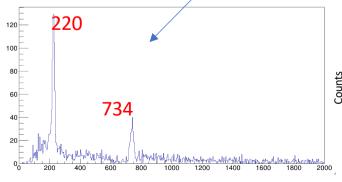

decay detector

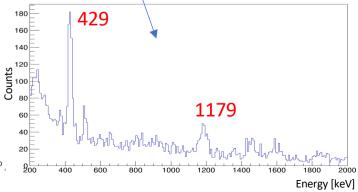
Engineering run Nov/Dec 2019

Implant \leftrightarrow decay $\leftrightarrow \gamma$ -ray Correlations tested and working



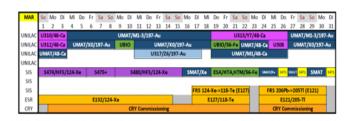
implantation and decay detector


AIDA


FATIMA
Fast Timing LaBr₃ Array

DEGAS/GTC
HPGe Array

FATIMA isomer spectrum in ³²Al Fatima spectrum of ³⁴Al beta decay



- Detectors fully performing
- Tested electronics from each branch
- Fully integrated DAQ
- On-line and off-line sorting programs

DeSpec experiments in 2020

S480 ¹²⁴Xe beam 9 – 15 March 2020: Structure of the heaviest N=Z nuclei:

Seniority Transitions in 94Pd

Regan, Gorska, Cederwall

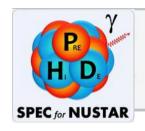
Isomer search + p-radioactivity

Ion- γ and Ion- $\beta/p-\gamma$

S452 ²⁰⁸Pb beam 7 – 14 April 2020 **Prolate-Oblate Shape Transition** around A~190

Not performed owing to COVID-19 pandemie

| MAY | Fr | Sa | So | Mo | Di | Mi | Do | Fr | Sa | So | Mo | Di | Mi | Do | Fr | Sa | So | Mo | Di | Mi | Do | Fr | Sa | So | Mo | Di | Mi | Do | Fr | Sa | So | Mo | Di | Mi | Do | Fr | Sa | So | Mo | Di | Mi | Mo | Fr | Sa | So | Mo | Di | Mi | Mo | Fr | Sa | So | Mo | Di | Mi | Mo | Fr | Sa | So | Mo | Di | Mi | Mo | Fr | Sa | So | Mo | Di | Mi | Mo | Fr | Sa | So | Mo | Di | Mi | Mo | Fr | Sa | So | Mo | Di | Mi | Mo | Fr | Sa | So | Mo | Di | Mi | Mo | Fr | Sa | So | Mo | Di | Mi | Mo | Fr | Sa | So | Mo | Di | Mi | Do | Fr | Sa | So | Do | Di | Mi | Do | Fr | Sa | So | Do | Di | Mi | Do | Fr | Sa | So | Do | Di | Di | Mi | Do | Di | Mi | Do | Pi | Sa | So | Do | Di | Di | Mi | Do | Pi | Sa | So | No


Investigation of 220<A<230 Po-Fr nuclei lying in the south-east frontier of the A~225 island of octupole deformation Morales, Benzoni, Valiente-Dobòn

Isomer search+
Fast-timing following
β decay

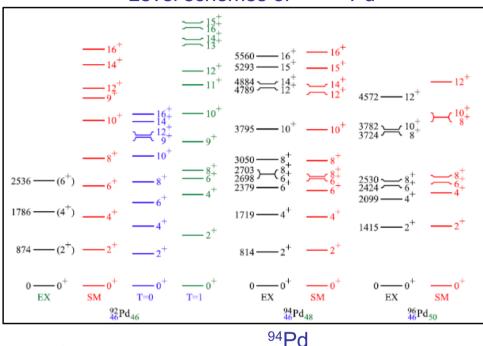
Ion- γ and Ion- β - γ - γ

 $\begin{array}{l} \text{Isomer search+} \\ \text{Fast-timing following} \\ \beta \text{ decay} \end{array}$

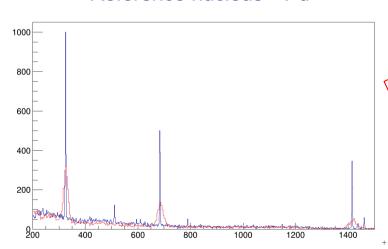
Ion- γ and Ion- β - γ - γ

First "real" DeSpec experiment

S480 ¹²⁴Xe beam 9 – 15 March 2020:

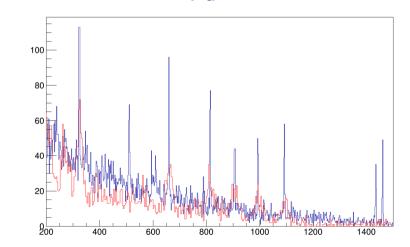

Structure of the heaviest N=Z nuclei:

Seniority Transitions in ⁹⁴Pd


Spokespersons: Regan, Gorska, Cederwall

→ New lifetimes in the ps-to-ns regime

Level schemes of 92,94,96Pd

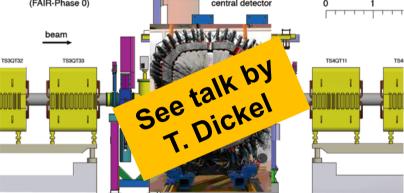


PRELIMINARY!
from 16h of data

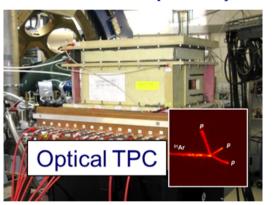
Galileo and FATIMA isomer spectra

Super-FRS Experiment Collaboration

High-resolution spectrometer experiments at the border line of nuclear, atomic and hadron physics


(Super-)FRS as multiple-stage magnetic system (separator, analyser, spectrometer, energy buncher) combined with ancillary detectors, e.g. with:

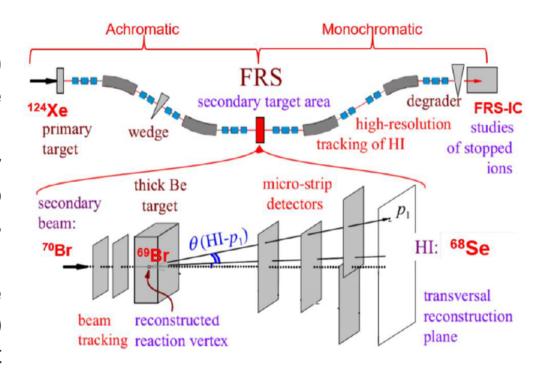
FRS Ion Catcher (2020)



→ Cryogenic Stopping Cell

EXPERT (2022)

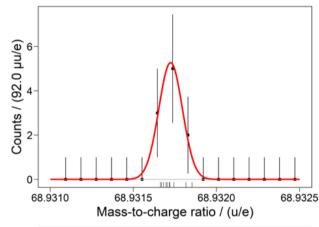
at FRS...

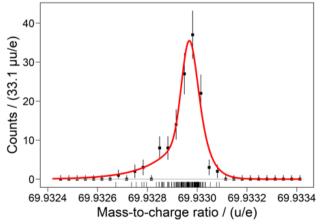


Super-FRS Experiment Collaboration

Joint experiment S459+ (EXPERT@S2 & FRS Ion Catcher@S4)

- Experiment S472 of the FRS Ion Catcher Group ran in March 2020 jointly with S459 and S443 of the EXPERT group (coined S459+)
- The two groups used simultaneously the same primary beam (124Xe) to measure properties of exotic isotopes at and beyond the proton dripline
- The FRS Ion Catcher setup is at the final focus plane of the FRS (S4) whereas the EXPERT detectors are at its mid-focus (S2)

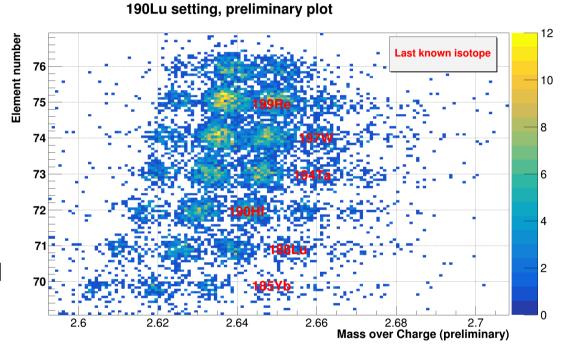



Joint experiment S459+

Preliminary physics results from FRS ion catcher and MR-TOF-MS

- First direct mass measurement of ⁶⁹As, with better accuracy than the literature value.
- Mass measurement of ⁷⁰Se with an expected uncertainty of ~2-3 keV, probably the best achieved with a MR-TOF-MS in this mass range.
- Additional A=71 mass peaks are under analysis

S468 – Search for new neutron-rich isotopes and exploratory studies in the element range from terbium to rhenium



Partial statistics of the 190Lu setting

→ in red the last known isotope of this element

To claim discovery 3 counts are needed

Work ongoing on estimating background

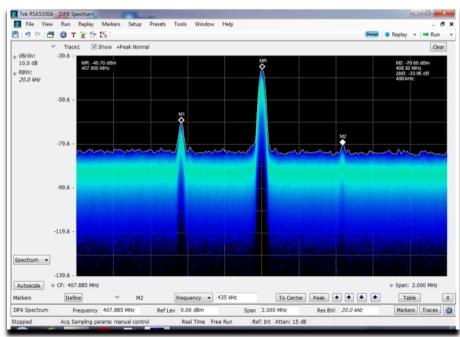
ESR experiments in 2020

APPA and NUSTAR experiments

- Experiments at the ESR
- E135: ⁸⁴Kr³²⁺ (laser)
- E132: ¹²⁴Xe (deceleration, Xe gasjet, e- spectrometer)
- E127: ¹²⁴Xe, ¹¹⁸Te (FRS, stochastic cooling, deceleration, H₂ gas-jet, DSSSD detector setup)
- E121: ²⁰⁵TI (FRS, stochastic cooling, accumlation, Ar gas-jet, CsISiPHOS detector, long storage times)

- All major manipulation capabilities and instrumentations of the ESR were taken into operation during setting up of the experiments.
- ✓ Stable operation during experiments.

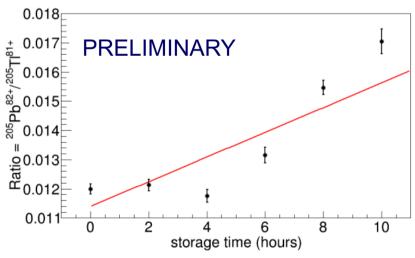
ILIMA Phase-0 program in 2020

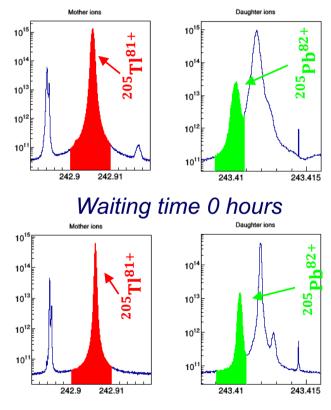

ILIMA Phase-0 program: ²⁰⁵Tl bound-state beta decay

- New prototype Schottky detector installed in ESR
 - Variable resonance frequency: 408-416 MHz
 - Variable Q value: approx. 500-3000
 - High sensitivity

Engineering run in 2019

250 MeV/u ⁴⁰Ar¹⁸⁺ beam with 185uA Resonance at 407.855 MHz Betatron sidebands visible (machine tune)


E121: Bound-state beta decay of ²⁰⁵TI⁸¹⁺ ions


E121: Bound-state beta decay of ²⁰⁵TI⁸¹⁺ ions

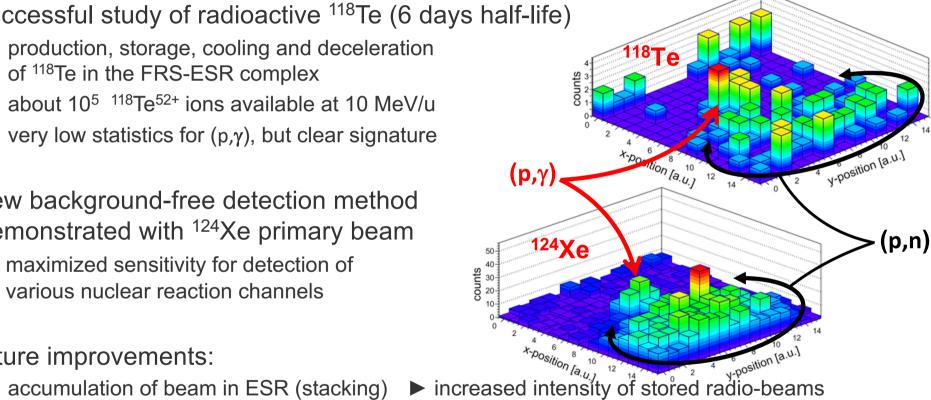
The half-life of secondary ions of about 100d is addressed

- Successful production and separation in the FRS
- Successful cooling and accumulation in the ESR
- Breeding times of up to 10 hours

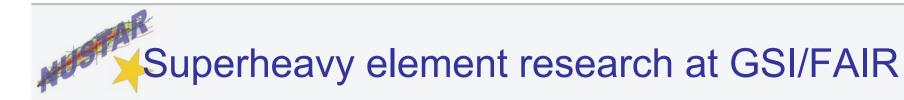
Number of ²⁰⁵Pb⁸²⁺ ions as a function of breeding time

Waiting time 10 hours

E127: Proton-capture rates for nuclear astrophysics

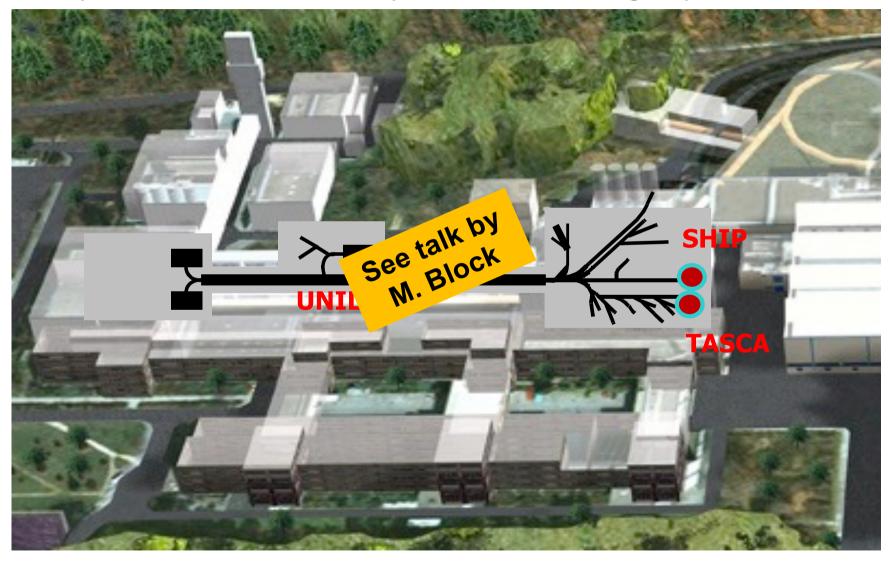


E127: Proton-capture rates for nuclear astrophysics


The first reaction study on a stored radio-beam at low energies

successful study of radioactive ¹¹⁸Te (6 days half-life)

- production, storage, cooling and deceleration of ¹¹⁸Te in the FRS-ESR complex
- about 10⁵ ¹¹⁸Te⁵²⁺ ions available at 10 MeV/u
- very low statistics for (p,γ) , but clear signature
- new background-free detection method demonstrated with ¹²⁴Xe primary beam
 - maximized sensitivity for detection of various nuclear reaction channels
- future improvements:


- proton-capture experiments in CRYRING ▶ access to lowest beam energies (Gamow window)

FAIR

SHE experiments use GSI Facility – research is integral part of NUSTAR

NUSTAR UNILAC beam time in 2020

U308	50-Ti	Yakushev	2020-02-13	2020-02-20	NUSTAR-SHE-C	First chemical study of element 113 behind TASCA	7
U310	48-Ca	Rodolph	2020-02-20	2020-03-04	NUSTAR-SHE-C	Spectroscopy of Flerovium	13
U308	48-Ca	Yakushev	2020-03-25	2020-03-27	NUSTAR-SHE-C	First chemical study of element 113 behind TASCA	2
U308	48-Ca	Yakushev	2020-04-01	2020-04-07	NUSTAR-SHE-C	First chemical study of element 113 behind TASCA	6
U308	48-Ca	Yakushev	2020-04-07	2020-04-15	NUSTAR-SHE-C	First chemical study of element 113 behind TASCA	8
U308	48-Ca	Yakushev	2020-04-22	2020-05-06	NUSTAR-SHE-C	First chemical study of element 113 behind TASCA	14
U308	48-Ca	Yakushev	2020-05-12	2020-05-16	NUSTAR-SHE-C	First chemical study of element 113 behind TASCA	4
U308	48-Ca	Yakushev	2020-05-21	2020-05-26	NUSTAR-SHE-C	First chemical study of element 113 behind TASCA	5
U313	48-Ca	Laatiaoui	2020-03-19	2020-03-27	NUSTAR-SHE-P	Laser spectroscopy of nobelium and lawrencium / High-resolution laser spectroscopy of nobelium	8
U313	48-Ca	Laatiaoui	2020-04-01	2020-04-07	NUSTAR-SHE-P	Laser spectroscopy of nobelium and lawrencium / High-resolution laser spectroscopy of nobelium	6
U313	48-Ca	Laatiaoui	2020-04-07	2020-04-15	NUSTAR-SHE-P	Laser spectroscopy of nobelium and lawrencium / High-resolution laser spectroscopy of nobelium	8
U314	48-Ca	Räder	2020-04-22	2020-05-06	NUSTAR-SHE-P	Laser spectroscopy of nobelium and lawrencium / High-resolution laser spectroscopy of nobelium	14
U314	48-Ca	Räder	2020-05-12	2020-05-16	NUSTAR-SHE-P	Laser spectroscopy of nobelium and lawrencium / High-resolution laser spectroscopy of nobelium	4
U314	48-Ca	Räder	2020-05-16	2020-05-26	NUSTAR-SHE-P	Laser spectroscopy of nobelium and lawrencium / High-resolution laser spectroscopy of nobelium	10
U312	50-Ti	Block	2020-02-13	2020-02-20	NUSTAR-SHE-P	Direct mass measurements with SHIPTRAP	7
U312	48-Ca	Block	2020-02-20	2020-03-04	NUSTAR-SHE-P	Direct mass measurements with SHIPTRAP	13

U310 - α-photon Spectroscopy of Flerovium Decay Chains

Spokesperson: D. Rudolph Contact: A. Yakushev, Ch.E. Düllmann

- Magic number at proton number Z = 114 (FI)?
- Search for even-*Z* odd-*N* experimental anchor points for nuclear structure theory in the superheavy regime.
- ⁴⁸Ca+²⁴⁴Pu to conduct first α-photon coincidence spectroscopy along decay chains of ²⁸⁹Fl.
- **Preliminary** summary:

Beam integral on target: $\sim 6 \cdot 10^{18}$

Decay chains expected at $\sigma_{prod} = 10 \text{ pb}$: ~30

Decay chains observed: ≥ 25

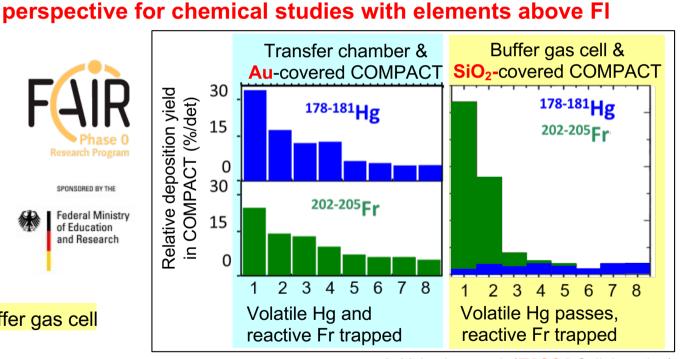
World data on directly produced ²⁸⁹Fl more than doubled!



TASiSpec

Upgraded decay station in the focal plane of the TASCA gas-filled separator, comprising four new COMPEX Germanium detectors, financed by the Knut and Alice Wallenberg foundation, as well as a former EUROBALL Cluster detector. The idea is to detect X rays and γ rays stemming from flerovium α-decay chains.

SHE Chemistry (U308): Ready for element 113



Full readiness for chemical studies of short-lived reactive SHE demonstrated by measuring volatile ₈₀Hg and non-volatile ₉₀Th (including 26-ms ²¹⁶Th!), ₁₀₂No, ₁₀₃Lr with high efficiency

New transfer chamber vs. existing buffer gas cell from TASCA to COMPACT

A. Yakushev et al. (TASCA Collaboration)

NUSTAR proposals for G-PAC 44 (2020)

DESPEC	(S-)FRS	ILIMA	R3B	SHE
22 proposals 12 new 3 A resubm, 3 other resub. 4 detector dev.	14 proposals6 new1 A resubm.6 other resub.1 detector dev.	3 proposals2 new1 other resub.	10 proposals6 new2 A resubm.2 other resub.	6 proposals 6 new
SIS: 362+62 shifts	SIS: 190+27 shifts UNILAC 30 shifts	SIS: 42 shifts	SIS: 238+43 shifts	UNILAC 384 shifts

NUSTAR: 55 proposals, incl. 6 A-rated resubmissions

SIS request: 832 + 132 shifts (for ~400 available)

UNILAC request: 414 shifts

Backlog of NUSTAR-FRS experiments

S460	238-U	Valiente Dobon	2020-05-01	2020-05-07	NUSTAR- DESPEC	Investigation of 220-A-230 Po-Fr nuclei lying in the south-east frontier of the A~225 island of octupole deformation	6
S470	238-U	Pietri	2020-05-14	2020-05-15	NUSTAR- DESPEC	Test of an HISPEC TEGIC detector for Low Energy Branch experiments	1
S455	238-U	Taieb	2020-04-23	2020-04-28	NUSTAR-R3B	Fission investigated with relativistic-radioactive beams and the advanced SOFIA@R3B setup	5
S455	238-U	Taieb	2020-05-16	2020-05-21	NUSTAR-R3B	Fission investigated with relativistic-radioactive beams and the advanced SOFIA@R3B setup	5
S452	208-Pb	Witt	2020-04-07	2020-04-15	NUSTAR-SFRS	The Oblate-Prolate Shape Transition around A~190	8
S475	238-U	Dickel	2020-05-08	2020-05-13	NUSTAR-SFRS	Reaction studies with the FRS Ion Catcher: A novel approach and universal method for the production, identification of and experiments with unstable isotopes produced in multi-nucleon transfer reactions with stable and unstable beams	5
S442	40Ar	Sorlin	2021/22		NUSTAR-R3B	Study of multi-neutron configurations in atomic nuclei towards the neutron drip line	7
S450	208Pb	Podolyak	2021/22		NUSTAR- DESPEC	Study of N=126 nuclei: isomeric and beta decays in 2020s and 203Ir	6
S447	6Li	Saito	2021/22		NUSTAR-SFRS (WASA)	Studies of the d + π - signal and lifetime of the 3 H and 4 H hypernuclei by new spectroscopy techniques with FRS	9

Open NUSTAR experiments of 52 days for 2021+

G-PAC 44 results for NUSTAR

DESPEC	(S-)FRS	ILIMA	R3B	SHE
22 proposals 12 "new" A: 5 (+3 dev.) (w. 3 resubm.) A-: 1	14 proposals 6 "new" A: 4 (+3 dev.) (w. 1 resubm) A-: ?	3 proposals 2 "new" A: 1 (no resub.)	10 proposals 6 "new" A: 4 (w. 2 resubm.) A-: 1	6 proposals 6 "new" A: 5
SIS shifts: 108 (main) 30 (second.)	SIS shifts: 72 (main) 46 (second.) UNILAC shifts: 27 (second.)	SIS shifts 6 (main)	SIS shifts 108 (main) 18 (second.)	UNILAC shifts: 232 (main) 149 (second.)

NUSTAR: 19 A ratings, incl. 6 A-rated resubmissions

SIS beamtime shifts: 294 (main) + 94 (second.)

UNILAC beamtime shifts: 232 (main) + 176 (second.)

Optimisation of NUSTAR experiments

- Optimal beam parameters Discussion with accelerator and FRS

FRS well in advance of the experiments

provide diagnostic help for machine side

on-line control beam parameters

Maximize detector efficiencies

Minimize DAQ dead time

- Minimal set-up time with beam Need for engineering runs

beam sharing during set-up time

pre-adjust EDAQ with sources and pulsers

Maximal production time Minimize maintenance downtimes

Maximize detector/EDAQ reliability

adapted from J. Ger (NUSTAR TB)

Conclusions

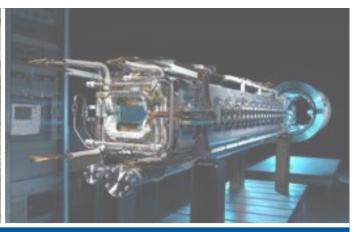
NUSTAR Phase-0 experiments are well underway

- > Successful (but still limited) experimental campaign in spring 2020
- ➤ Important remaining backlog for 2021/22

▶ NUSTAR at the G-PAC meeting 2020

- > Community is eager and preparing a large number of proposals
- > Satisfactory outcome in view of the limited amount of available time
- Difficult planning due to the large variety of different set-ups

NUSTAR planning for 2021/22


- Ongoing discussion to fit as many experiments as possible
- > Several limiting factors (readiness, WASA set up at FRS S2, etc.)

Preparation of NUSTAR MoU

- Common MoU with Collaboration Agreements as Annexes
- ➤ Need to finalise common fund requests from TDRs

Thank you for your attention and to the NUSTAR collaboration committee for providing the material

NUSTAR Annual Meeting

Darmstadt, Germany, September 30th, 2020

