Status of the COSY-TOF Straw Tube Tracker

XXXIII. PANDA Collaboration Meeting – June, 15th 2010 | Matthias Röder

COSY-TOF Detector Overview I

- 4 π detector e.g. for pKA reactions
- Vacuum barrel ($\leq 0^{-3}$ mbar) to reduce multiple scattering
- Specialised on event geometry thus no magnetic field
- Time Of Flight for momentum measurement

XXXIII. PANDA Collaboration Meeting – June, 15th 2010

COSY-TOF Detector Overview II

- Improved COSY-TOF Detector:
 - With the new Silicon Quirl Telescope (SQT)
 - an new Straw Tube Tracker (STT)

COSY-TOF Straw Tube Tracker

- 2740 straws (*ℓ*=1m, ⊘=1cm)
 - Arranged in 26 layers
 - 3 orientations for 3D tracking
 - ⇒ Panda prototype with similar system size
- Ar:CO₂ 9:1 at 1.2 bar pressure
- Operated in vacuum at $\leq 10^{-3}$ mbar \Rightarrow Harder conditions as for PANDA
- Material between target and STT:
 - Start: 2 × 1 mm scintillator
 - SQT: 2 imes 500 μ m silicon
 - Fibre hodoscope: 3 × 2 mm fibre

Straw Tube Tracker Installation

The Straw Tube Tracker installation

Vertex Reconstruction I (only STT)

- Combination of 2 close skewed tracks
- Common fit of track directions and vertex point
- \Rightarrow 7 parameter "orthogonal line fit" with the STT

Vertex Reconstruction II (only STT)

- 1 vertex events without cuts and (p p \rightarrow 1 2) hypothesis:
 - Distinct peak on pp ellipsis
 - Deuteron and pion ellipses drown in background

Geometrical $\vec{p}p \rightarrow pp$ Reconstruction I

- Distinct peaks in *E_x* and coplanarity
- Both include too much background

Geometrical $\vec{p} p \rightarrow p p$ Reconstruction II

Circular cut yields excellent S/N

$\vec{p} p \rightarrow p p$ Vertex Resolution

- (beam profile \times vertex resolution): y \approx 1.1 mm, x \approx 1.3 mm
- z resolution: \approx 2.1 mm from (Gauss \times rectangular) fit
- \Rightarrow Very good vertex resolution for COSY-TOF

XXXIII. PANDA Collaboration Meeting - June, 15th 2010

Straw Calibration Method

- 9:1 Ar:CO₂ @ 1 bar: linear drift time to radius relation
- \Rightarrow Box shaped spectrum with deviations from cluster effect
 - Assume homogeneous illumination:

$$r(i_{
m tdc}) = \sum_{i=i_{
m begin}}^{i_{
m tdc}} (n_i) / N_{
m sum} \cdot R_{
m Straw}$$

 Calibration curve with a wide linear part but deviations at higher tdc times

XXXIII. PANDA Collaboration Meeting - June, 15th 2010

Straw Calibration Improvement I

- residual = r(tdc) [track to wire distance]
- Systematic S-shaped offset from 0 for distances ≤0.18 cm
- \Rightarrow Recalibration will improve tracking performance

Straw Calibration Improvement II

- Linear relation between tdc time and most probable track to wire distance
- Work in progress: recalibration from this diagram
- Asymmetric probability distributions of distances
 - \Rightarrow can only be handled by a likelihood optimisation

Conclusion and Outlook

Conclusion

- The STT implementation to COSY-TOF reconstruction software is complete
- Geometrical $\vec{p}p \rightarrow pp$ reconstruction shows that the STT works very well
- Recalibration and straw alignment will further improve the results

Outlook

- 4 weeks beam time in August with
 - Less material between target and STT
 - More CO₂ admixture possible