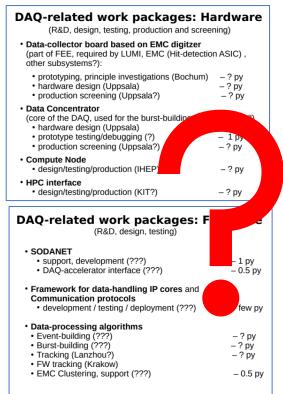


Concepts for PANDA DAQ system

Dr Grzegorz Korcyl

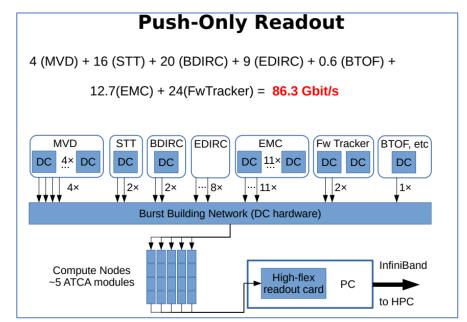
Department of Information Technologies


Jagiellonian University, Cracow

9 December 2019, Kraków

PANDA DAQ problems

- Constant shortage of manpower
- Slow, expensive and risky hardware development cycles
- Many custom hardware components, standards, protocols
 - In fact simillar boards: many links, powerful FPGA, differences in memory, clocking, system interfaces
- Time-scale, time-shifts, delays



DAQ-related work packages: Software (R&D, design, testing)

- DAQ functionality (so far only SODANET protocol)
 (???)
- DAQ control (communication with DSC, ECS) (???)
- DAQ online computing interface (???)
- Stand-alone DAQ (RUG/GSI/KIT/Bochum/Julich)

Custom elements mosaic

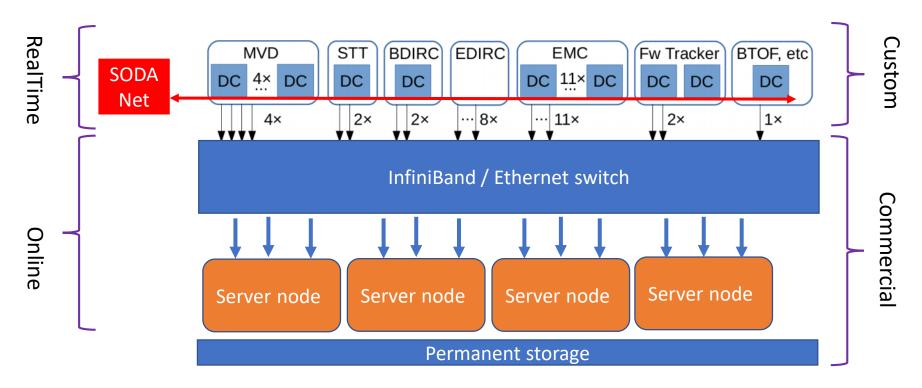
- Hardware
 - Subsystems FEE
 - Data Concentrators
 - SODANet distribution
 - Compute Nodes
 - High-Flex cards
- Protocols
 - Subsystem internal
 - SODANet
 - Raw 8/10b
 - InfiniBand
- Systems, interfaces
 - Standalone
 - ATCA
 - AMC
 - PCle

- Firmware/software
 - Subsystem preprocessing
 - Protocols stacks
 - Burst building
 - Analysis algorithms
 - Drivers

M. Kavatsyuk

Development issues

- Limited numer of experts in both HW and FPGA development
- Hardware:
 - Long development cycles
 - Expensive, time consuming iterations
 - Risky
 - Withdrawn, discontinued technologies (HMC on DC!)
 - Long-term investment (PANDA Day-0 still couple years ahead)
- Firmware:
 - Complex algorithms are hard to migrate to HDL
 - Long debugging cycles
 - Difficult evaluation



Proposed solution

- Escape to commercial hardware at the earliest stage
 - Long-term manufacturer support
 - Support from experts/community
 - Easily upgreadable with new HW/SW releases
- Select technologies with high-level development
 - Avoid reinventing the wheel (protocols, data handling, etc.)
 - Focus on algorithmics
 - Merge offline and online analysis procedures
 - Accelerate development and debugging cycles
 - Involve non-experts into the developers group

Proposed DAQ scheme

- Predicted 100 Gbps is not a challenge anymore
- Fast technology development in HPC sector in networking and processing
- DC:

٠

- SODANet distribution / slow control
- Data assembly / zero suppersion / filtration / compression
- Common routing protocol application (IB, Eth)
- Server nodes:
 - Complete SuperBursts assembly
 - High-level algorithms online but not in real-time

Server nodes

- Server nodes equipped with commercial but powerful hardware (CPU/GPU/FPGA)
 - No requirement to work in real-time regime
 - Easily scalable, easily upgradeable and easy to maintain
 - Trend in experiments: CBM, Alice
- Growing protfolio of FPGA, PCIe accelerator cards, e.g. Xilinx Alveo

- Complete package:
 - Hardware:
 - Powerful FPGA (Virtex U+ variants)
 - Embedded HBM/external DDR4
 - QSFP28 interfaces
 - PCIe Gen3 x16, CCIX
 - Firmware/Software:
 - basic FW shell
 - SW drivers
 - OpenCL support

	Product Name	Alveo U200	Alveo U250	Alveo U280	Alveo U50	
ions	Width	Dual Slot	Dual Slot	Dual Slot	Single Slot	
Dimensions	Form Factor, Passive Form Factor, Active	Full Height, ¾ Length Full Height, Full Length	Full Height, ¾ Length Full Height, Full Length	Full Height, ¾ Length Full Height, Full Length	Half Height, ½ Length	
	Look-Up Tables	1,182K	1,728K	1,304K	872K	₽
Logic Resources ¹	Registers	2,364K	3,456K	2,607K	1,743K	Alveo
Res	DSP Slices	6,840	12,288	9,024	5,952	ő
	DDR Format	4x 16GB 72b DIMM DDR4	4x 16GB 72b DIMM DDR4	2x 16GB 72b DIMM DDR4	-	ΤM
5	DDR Total Capacity	64GB	64GB	32GB	-	Da
DRAM Memory	DDR Max Data Rate	2400MT/s	2400MT/s	2400MT/s	-	Ita
AM P	DDR Total Bandwidth	77GB/s	77GB/s	38GB/s	-	C
B I	HBM2 Total Capacity	-	-	8GB	8GB	en
	HBM2 Total Bandwidth	-	-	460GB/s	316GB/s ⁴	enter
Internal SRAM	Total Capacity	43MB	57MB	43MB	28MB	Ā
Inte SRJ	Total Bandwidth	37TB/s	47TB/s	35TB/s	24TB/s	S
ŝ	PCI Express®	Gen3 x16	Gen3 x16	Gen3 x16, 2xGen4 x8, CCIX	Gen3 x16, 2xGen4 x8, CCIX	ë
Interfaces	Network Interface	2x QSFP28	2x QSFP28	2x QSFP28	U50 ² - 1x QSFP28 U50DD ³ - 2x SFP-DD	elerator
2 -	Thermal Cooling	Passive, Active	Passive, Active	Passive, Active	Passive	ğ
Power and Thermal	Typical Power	100W	110W	100W	50W	ò
§≓	Maximum Power	225W	225W	225W	75W	ar
Time Stamp	Clock Precision	-	-	-	IEEE Std 1588	ards
a S	INT8 TOPs	18.6	33.3	24.5	16.2	
Compute Performance	Machine Learning					
S F	Acceleration Applications	A	cceleration Application Solutio	ns		

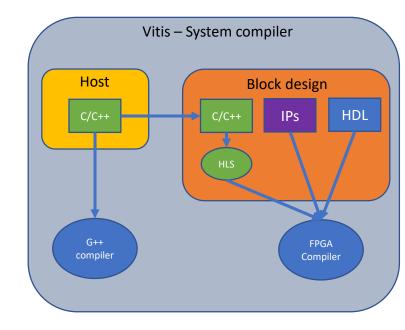
Xilinx.com

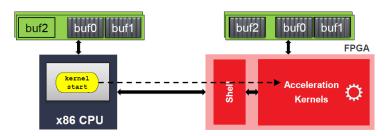
Alveo advantages

Costs

- No HW development costs
- Logic resources / \$
- Example: Alveo U50 2 500\$
 - Similar resources (Digikey, depends on speed grade):
 - Virtex U+ XCVU33P 20 000 40 000\$ (0.9 MLUTS, 2880 DSP, 8 GB HBM)
 - Similar price:
 - Kintex U XCKU040 2 500\$ (0.8 MLUTs, 1970 DSP, no HBM)
 - FPGA on Data Concentrator:
 - Kintex U+ XCKU15P 4 000 8 000\$ (1.1 MLUTs, 1970 DSP, no HBM)
 - FPGA on High-Flex:
 - Virtex 7 XC7V330T-2 **4 000 \$** (0.3 MLUTs, 1120 DSP, no HBM)

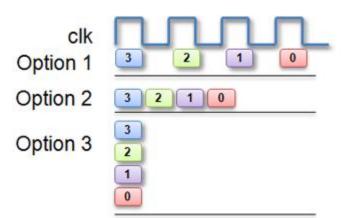
Product Name Alveo U50 Width Single Slot Form Factor, Passive Half Height, ½ Length Form Factor, Active Look-Up Tables 872K Registers 1,743K DSP Slices 5,952 **DDR** Format **DDR Total Capacity** DDR Max Data Rate _ **DDR Total Bandwidth** _ HBM2 Total Capacity 8GB HBM2 Total Bandwidth 316GB/s4 **Total Capacity** 28MB **Total Bandwidth** 24TB/s PCI Express® Gen3 x16, 2xGen4 x8, CCIX U50² - 1x OSFP28 Network Interface U50DD³ - 2x SFP-DD Thermal Cooling Passive Typical Power 50W Maximum Power 75W **Clock Precision** IEEE Std 1588

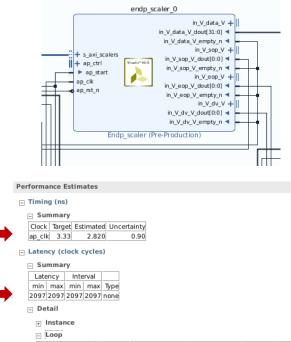

P. Marciniewski, "A data concentrator for the PANDA experiment", 2019


M. Caselle, "High-speed, low-latency readout system with real-time trigger based on GPUs", 2016

Alveo advantages

- Integrated development environment
 - Entire project in C/C++
 - Abstract code structures (structures, classes)
 - OO mechanisms: operators overload, inheritance, templates
 - No dynamic memory management (on HW)
 - Incorporate HDL IP Cores
 - Host <-> Kernel architecture
 - Main function starting point on the host
 - Kernel hardware accelerated function
 - Algorithm debugging on C++ level
 - Encapsulates all other tools and compilers
 - Multi-level evaluation: g++, hw emulation, hw





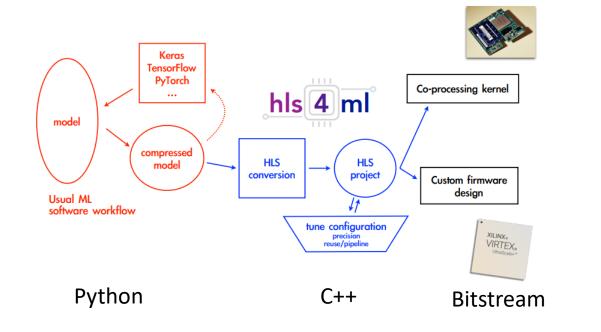
Development in HLS

- Single function single component
 - Function arguments become component interface
 - Function body translated into logic
 - Results analysis with a set of reports
 - Timings, resources
 - Compilation process controlled with a set of #pragmas
 - High level component evaluation

	Latency			Initiation Interval			
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	1568	1568	290	1	1	1280	yes
 data_out_transfer 	514	514	4	1	1	512	yes

Utilizatio	n Estimates
othizatio	Louinaces

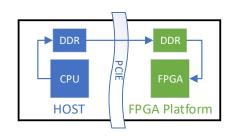
Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-		-	
Expression	-	-	0	237	
FIFO	-	-		-	
Instance	150	2596	505116	290902	
Memory	0	-	512	0	8
Multiplexer	-	-		352	
Register	0	-	24049	320	
Total	150	2596	529677	291811	8
Available	5376	12288	3456000	1728000	1280
Utilization (9	(6) 2	21	15	16	~0



HLS Example

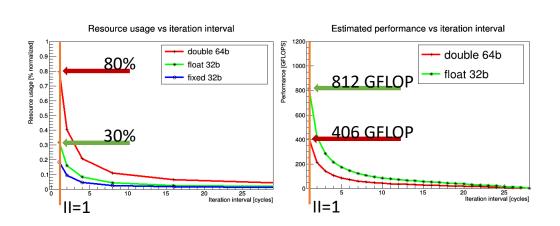
- Entire flow for Neural Network implementation on FPGA within a single HDL module
- Advantages: fixed latency, controlled level of parallelism, custom data types
- Used for example in L1 trigger at CMS CERN

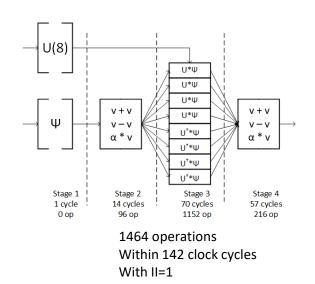
"Artificial Intelligence Accelerates Dark Matter Search", Xilinx Case Study 2019


- Import trained NN model to FPGA with just few mouse clicks
- MNIST network example implemented by students during FPGA Summer Camp 2019

hls4ml

Alveo application example


- Conjugate Gradient as HPC benchmark
 - Host prepares data sets and streams to the accelerated kernel
 - 1464 floating point (IEEE754) numerical operations per single set
 - Kernel implemented with II=1, latency 142 at 300 MHz
 - 2x faster than Intel Xeon Phi 64-core, 1.7 GHz
 - Reaching performance of Nvidia V100 (only 15% of PP!)



S. Durr, "Three Dirac operators on two architectures with one piece of code and no hassle", LATTICE2018, arXiv:1808.05506v2, Nov. 2018

E. Berkowitz, et. Al.. "Simulating the weak death of the neutron in a femtoscale universe with near-exascale computing", 2019

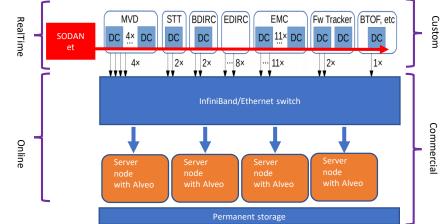
• Not a single HDL line written

Algorithms on Alveo

- · Many data analysis algorithms already developed by physicists
 - Migrate from C/C++/Python/Root/PandaRoot to C++/OpenCL
 - C++/OpenCL runs also on GPUs interesting research
 - Can be done by people without strong FPGA background
 - Easy and fast evaluation with simulated/collected data
 - Growing library of HW-optimised libraries/functions
 - E.g. OpenCV Kalman Filter
 - Easily maintenable
 - Easily upgradeable

Resource Utilization

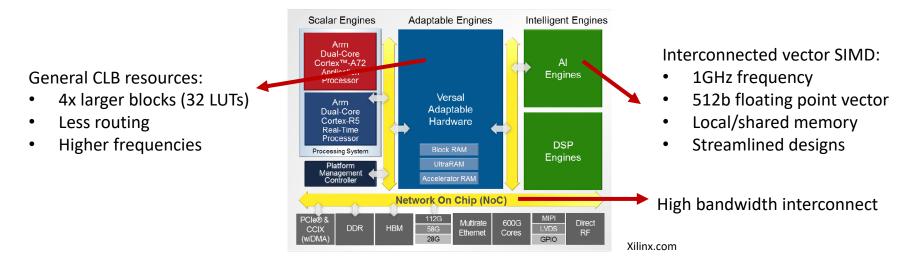
The following table summarizes the resource utilization of the kernel in different configurations, generated using SDx 2018.3 tool for the Xilinx Xczu9eg-ffvb1156-1 FPGA.


Table 249: Kalman Filter Function Resource Utilization Summary

	Resource Utilization				
Name	N_STATE=128; C_CTRL=128; M_MEAS=128; MTU=16; MMU=16	N_STATE=64; C_CTRL=64; M_MEAS=12; MTU=4; MMU=1	N_STATE=5; C_CTRL=4; M_MEAS=3; MTU=1; MMU=1		
	300 MHz	300 MHz	300 MHz		
BRAM_18K	275	87	25		
DSP48E	604	141	76		
FF	159624	64230	33711		
LUT	80631	34857	17656		

- Hardware available for tests on cloud providers (Nimbix, Amazon)
- Cluster available at ETH Zurich (registration required)
- Xilinx will soon open Alveo cluster for universities early access for UJ

Proposed PANDA DAQ

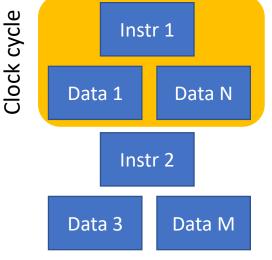

- Keep subsystems FEE, synchronized with SODANet
- Exit the real-time path on Data Concentrator level and enter standard network
- Push-only architecture total 100 Gbit/s
 - Commercial network and switch
 - Route SuperBurst fragments to Alveo farm
- Alveo farm
 - Accumulate data in HBM and reassemble SB
 - Perform complex algorythmics
 - Store the results

What is next to come

7nm Versal Architecture

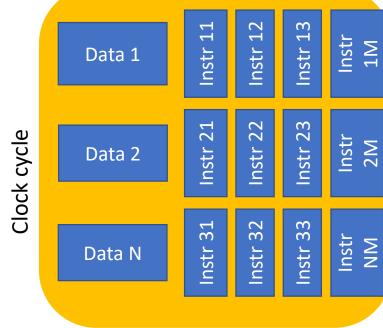
• New Alveo cards will be released soon: 3 versions per year

Research plans


- Continuation of research on Conjugate Gradient on FPGA
 - 3 published papers, 1 under review, application for ISC Frankfurt 2020
 - Strong support from Xilinx
 - Early access to software and hardware
- Application for a scientific grant
 - Development of an energy-efficient and adaptable supercomputing module for HPC
 - Dedicated for establishment of young research groups
 - Decision Q3/2020, starting Q1/2021, duration 2 years
 - 350 000 EUR (60 000 EUR for hardware)
 - 4 team members
- Evaluation of algorithms for PANDA
 - Migration of FT tracking based on Kalman filtering to HLS and OpenCL
 - Evaluation on Alveo, performance comparisons to GPU
 - Reactivate research group at the Technical University in Cracow

Backups

CPU vs GPU vs FPGA


Instr 1 Data 1 Instr 2 Data 2 Instr 3 Data 3 Instr 4 Data 4

- CPU
 - Single Instruction Single
 Data per core
 - Fixed instruction set
 - Multiple cores
 - High clock freq.
 - Operating system

- □ GPU
 - Single Instruction Multiple Data
 - Fixed instruction set
 - High clock freq.
 - Memory access
 - Accelerates CPU

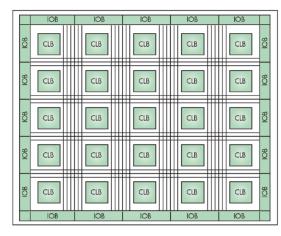
- FPGA
 - Flexible architecture
 - Massive parallelism
 - Streamlined processing
 - Low clock freq.
 - Instant memory access
 - Standalone platforms

Different approach

Instead of adapting the program to a given architecture

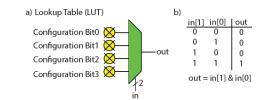
Let's design the architecture that performs the task in the most efficient way

Especially when algorithms evolve much faster than hardware


What are FPGAs

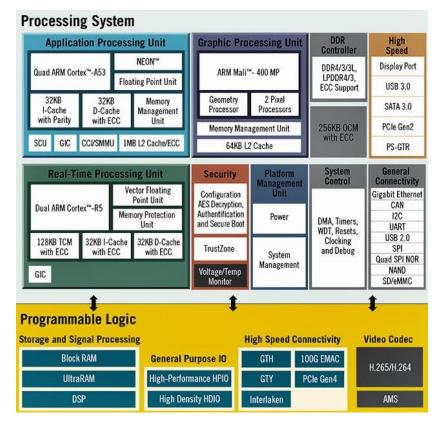
• Field Programmable Gate Arrays

- Devices for processing digital data streams
- Adaptable computing resources
- Reconfigurable at any time



Arrays of Configurable Logic Blocks

Basic Configurable Logic Block



R. Kastner, J. Matai, S. Neuendorffer "Parallel Programming for FPGAs"

What are FPGAs

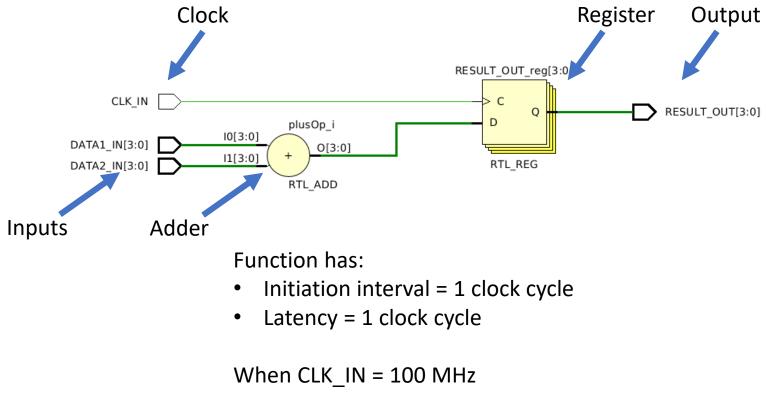
- Much more than just CLBs:
 - Memory blocks
 - DSP block (hard multipliers)
 - Multigigabit transceivers
 - Clock managers
 - Hard protocols and codecs
 - Ext. memory controllers
 - ADC/DAC
- Complete System-On-Chip:
 - PowerPC/ARM
 - Ext. Memory controllers
 - Multiple I/O controllers
 - Fast interconnect

Xilinx Zynq MPSoC - infrastructure

Xilinx.com

An example – source code

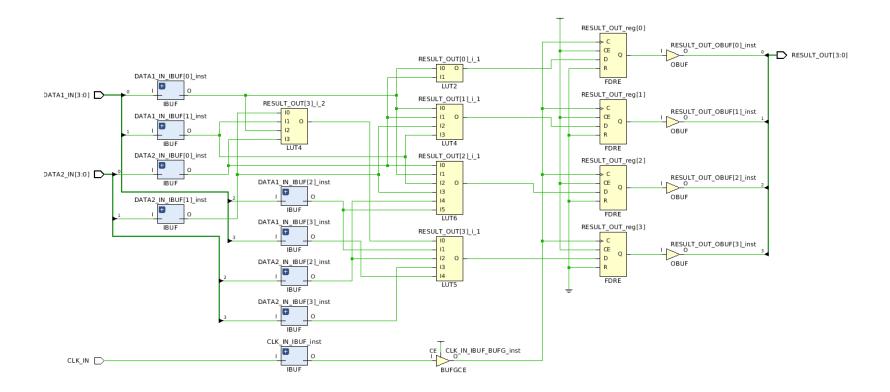
```
library IEEE;
 1
 2
     use IEEE.STD LOGIC 1164.ALL;
 з і
     use IEEE.STD LOGIC unsigned.all;
     use IEEE.NUMERIC STD.ALL;
 4
     library UNISIM;
 5
 6
     use UNISIM. VComponents.all;
 7 3
 8 🖨
     entity top is
     Port (
 9 i
         CLK IN : in std logic;
10 :
         DATA1 IN : in std logic vector(3 downto 0);
11 :
12
          DATA2 IN : in std logic vector(3 downto 0);
          RESULT OUT : out std logic vector(3 downto 0)
13
14 🗄
     );
15 🛆 end top;
     architecture Behavioral of top is
16 🕀
17 :
     begin
18 ;
19 🖯
          process(CLK IN)
20 ¦
          begin
21 🖯
             if rising edge(CLK IN) then
22
                  RESULT OUT <= DATA1 IN + DATA2 IN;
23 🖨
              end if:
24 Ĥ
          end process;
25
26 😑 end Behavioral;
```


Top-level interface – hardware pins, relates to the board design

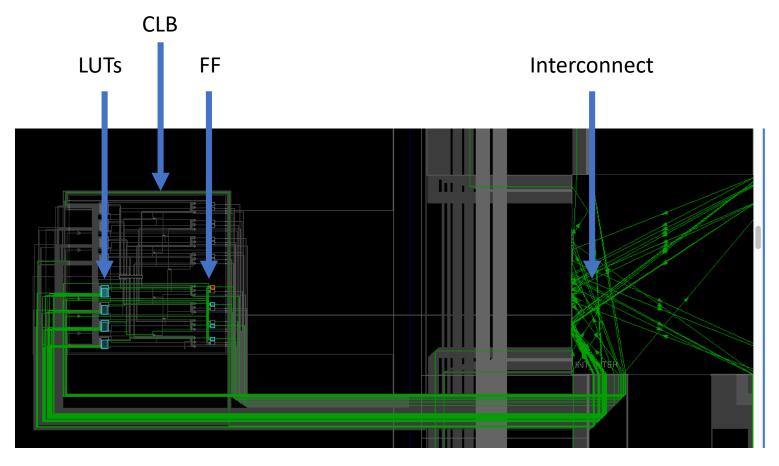
Logic that describes the relation between input and output ports

An example – elaborated design

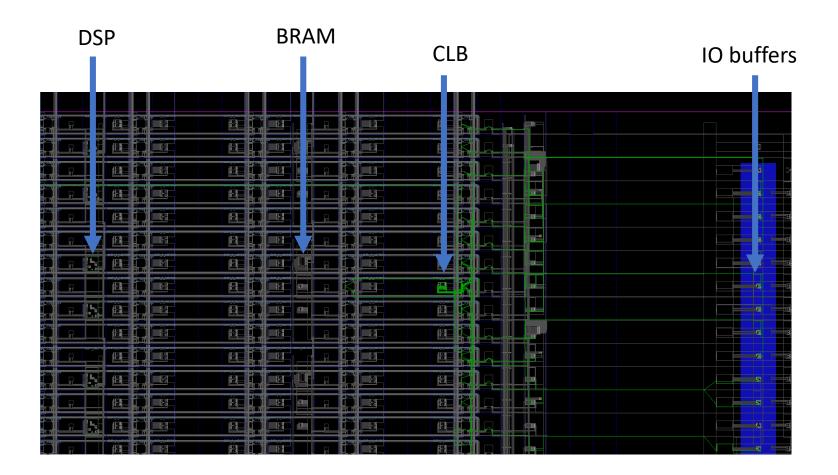
Functional schematic of the design

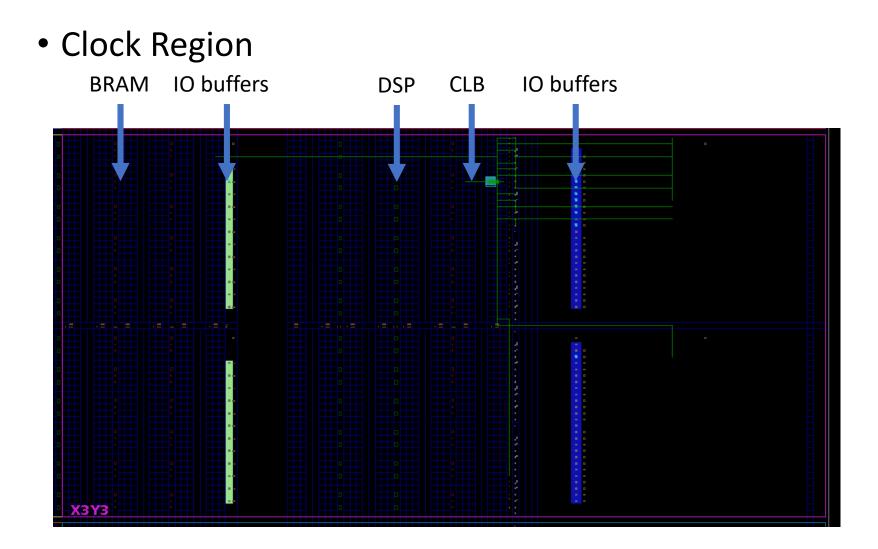


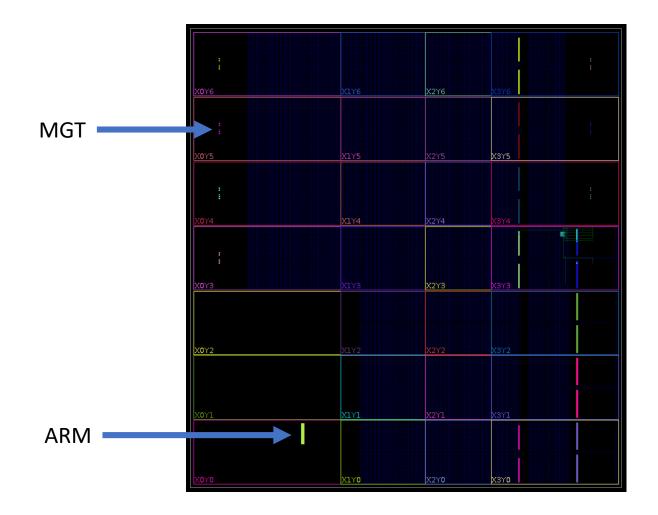
This logic will achieve 100 MOps/s

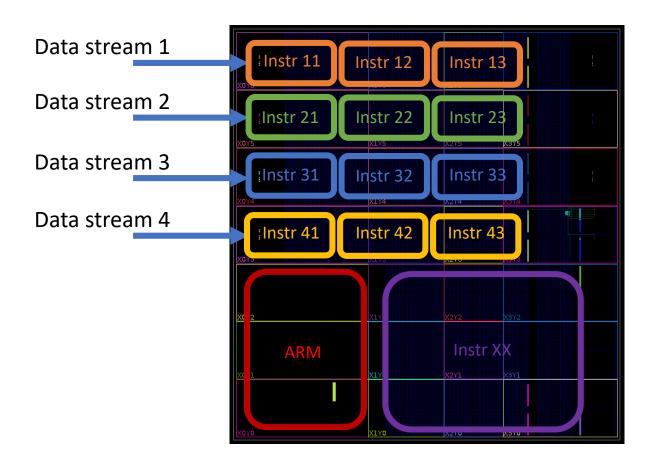

An example – synthesized design

• Functional schematic mapped into device resources



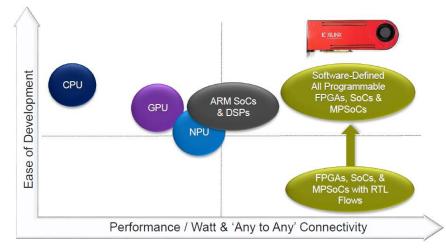

• Logic resources placed and connected in the device





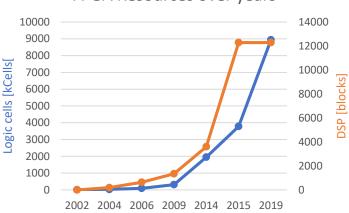
Utilization: LUT: 4 out of 274 080 FF: 4 out of 548 169

Natural parallelism and streamlined processing

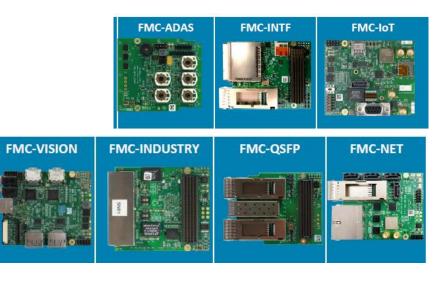

Advantages

- Architecture adapted for specific function
- Custom data types resource optimization
- Instant memory access to BRAMs
- Real time control over each clock cycle
- Natural parallelism
- Streamlined processing
- Perfect solution for:
 - Multi-channel sensor readout and processing
 - E.g. detector channels readout, multiple video streams processing, networking, ...
 - Sensor Fusion
 - Monitoring and control in real time
 - E.g. mission critical control
 - High Performance Computing
 - E.g. matrix multiplicaiton, neural network inference, ...

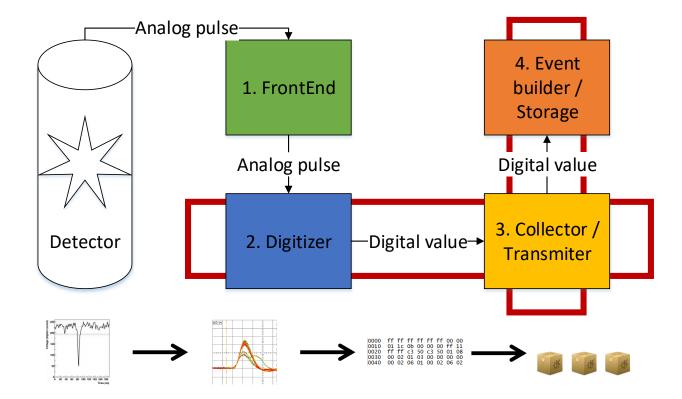
Disadvantages

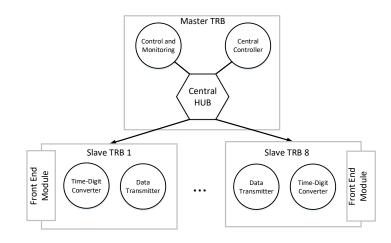

- Low level design
- Difficult firmware development
- Time consuming development and evaluation cycle
- High costs of single devices and of hardware development

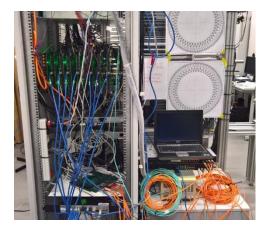
Why now

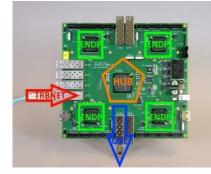

- Continuous increase of available resources
- Wide range of hardware platforms on the market
- Growing library of IP Cores
- Novel design development techniques

FPGA Resources over years


Example: Aldec TySOM-3A-ZU19EG 10x14 cm 1,1 kCells 2k DSP 70 Mb memory ARM COrtexA53 4 Gb DDR4 QSFP+, 2x RJ45, 4x USB, 2x HDMI 2x FMC

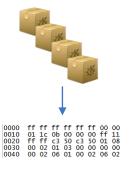

Processing pipeline



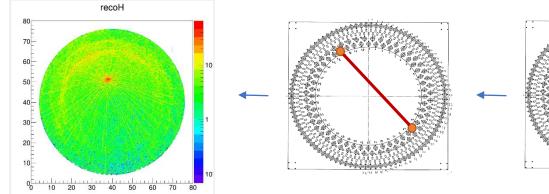

JPET Readout System

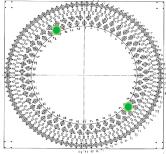
- Entirely based on FPGAs
 - Front End boards
 - Analogue signal discrimination
 - Digitizers / Data collectors
 - TRBv3 boards
 - TDC in FPGA
 - Data processing and visualization
 - Controller board continuous readout
 - Event by event processing
 - Custom hardware, custom protocols

G. Korcyl, M. Kajetanowicz, P. Moskal, M. Pałka "A system for acquisition of tomographic data" Patent nr.: US20160209522A1, WO/2015/028594



Traxler, M.; Korcyl, G.; Bayer, E.; Maier, L.; Michel, J.; Palka, M. "A compact system for high precision time measurements (<14 ps RMS) and integrated acquisition for a large number of channels", JINST 10.1088/1748-0221/6/12/C12004



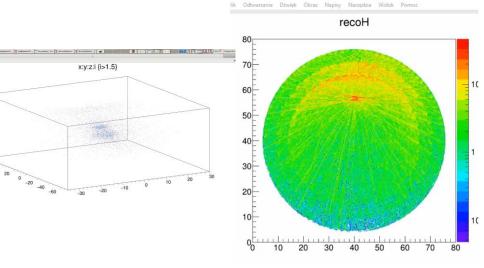

JPET processing pipeline

- Data processing steps
 - Data units reception and assembly
 - Extraction of timing data
 - Application of detector geometry
 - Application of calibration parameters
 - Search for time coincidences
 - Filtration
 - Construction of histogram and visualization

Hit1: ch 1, 115 ns, TOT 5 ns Hit2: ch 2, 116 ns, TOT 7 ns ...

JPET visualization

- Resource utilization: 75% (Zynq045)
- Performance: 42 Mhits/s
- Power consumption: 20 W
- About 1 year of development
- Almost entire design in low level HDL


40-

20

-20

-40

G. Korcyl, et al. JPET "Evaluation of single-chip, realtime tomographic data processing on FPGA SoC devices" IEEE Transactions on Medical Imaging, vol. 37/11, May 2018

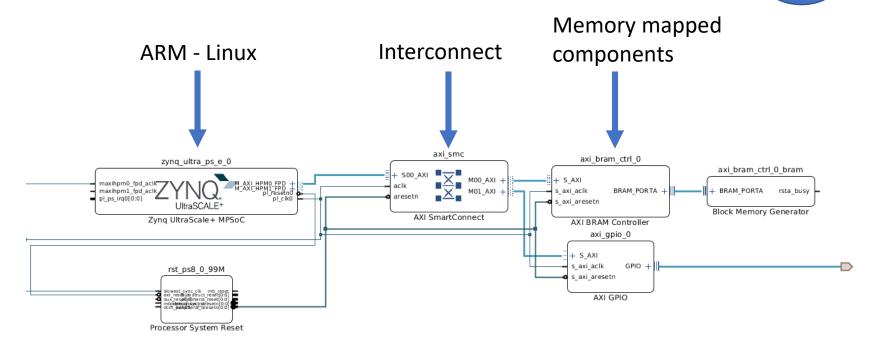
Shift in technology availability

- Wide variety of hardware components:
 - Evaluation boards, HW companies (Trenz, HiTech, Aldec, ...)
 - FPGA Mezzannine Cards (FMC, Vita standards), ...
- Well established standards, protocols and IP Cores:
 - AXI-based ecosystem, Aurora connectivity, ...
- Xilinx VCU108
 - Virtex Ultrascale U095
 - 1.1 M logic cells
 - 768 DSP
 - 60 Mb BRAM
 - 64 MGT (32 GTH / 32 GTY)
 - 8 GB DDR4
 - 2x FMC HPC 10xGTH

- Xilinx ZCU102
 - Zynq MPSOC ZU9EG
 - 0.6 M logic cells
 - 2520 DSP
 - 32 Mb BRAM
 - 24 MGT
 - ARM Cortex A53
 - 4 GB DDR4
 - 2x FMC HPC 16xGTH

• HTG FMC 10x SFP+

Modular JPET readout

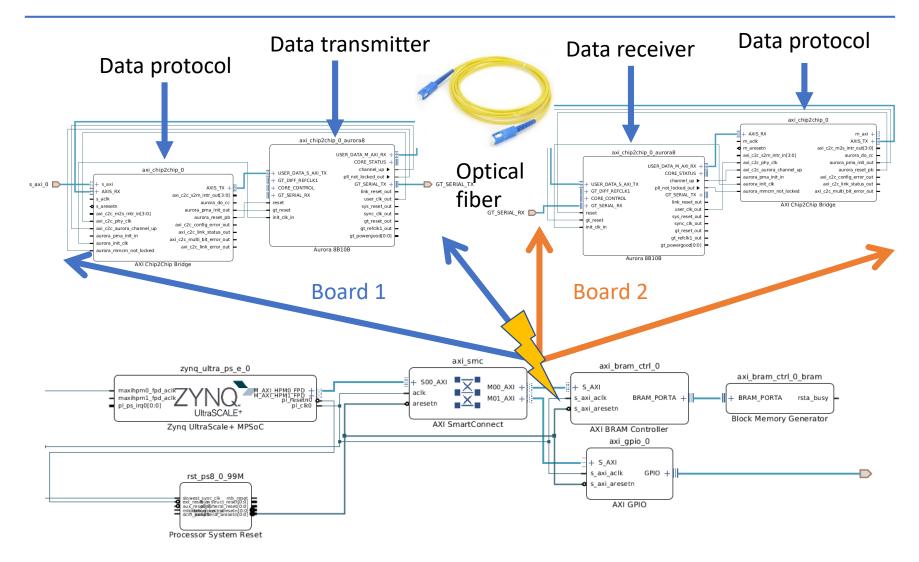

	JPET	Modular JPET	
Scintillators	192	312	1.6x
Analog channels	1536	4992	2.9x
Digitizers	32	48	6x
Logic [k cells]	350	5400	15.4x
Memory [Mb]	19	272	14.3x
DSP	900	3972	4.4x
ARM cores	2	4 + 2x RT + 1x GPU	>2x

Communication infrastructure

- Standard AXI interfaces and building blocks
- All components mapped into Linux physical memory
- All components accessible from software level on Linux
- Any HDL component can be encapsulated with AXI layer

Block design

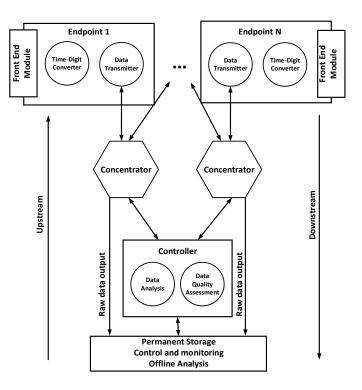
FPGA


Compiler

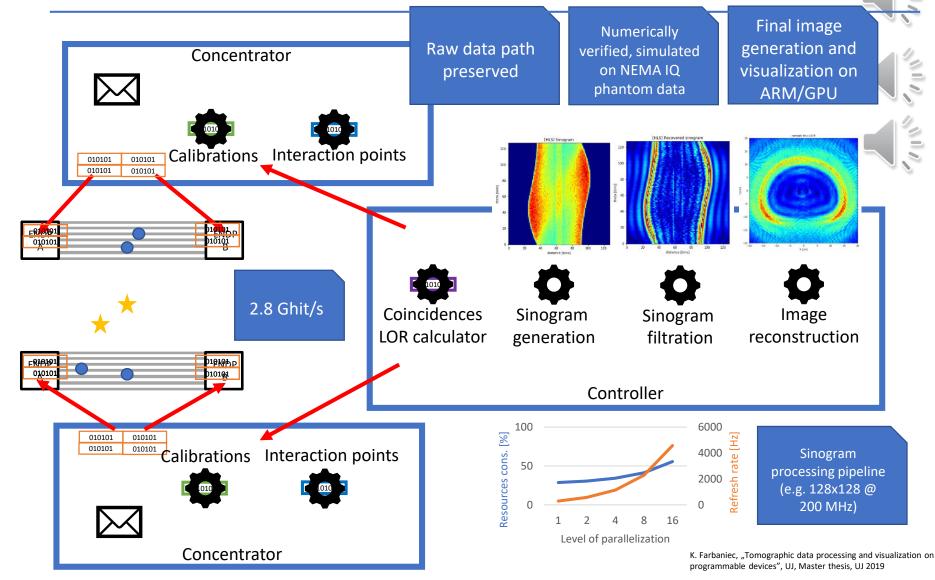
IPs

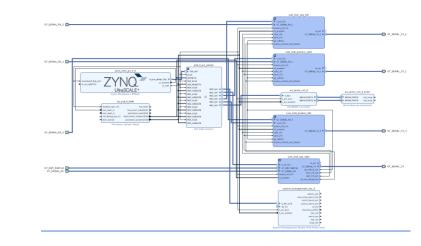
HDL

dpga dais


Communication infrastructure

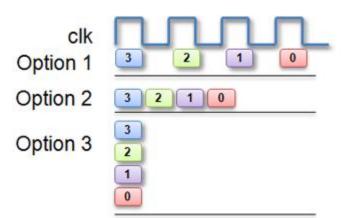
System design

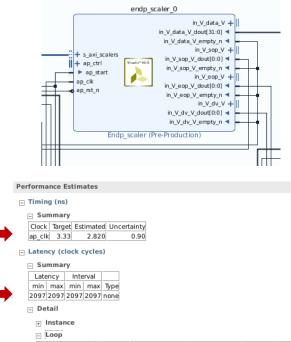

- Basic system infrastructure design and setup in a single day
 - 48 endpoint boards (Artix 7)
 - 4 concentrator boards (VCU108)
 - 1 controller board (ZCU102)
- Optical connections Aurora 8b/10b, 5Gbps, full-duplex
- Synchronous links precise time synchronization of all elements
- Each logical component in the system is addressable and accessible from the software on controller board
- Readout data stream mixed with control and monitoring messages
- 10 Gigabit Ethernet UDP module


Full processing pipeline

Novel development techniques

- Reduce HDL logic development to minimum
 - Time consuming, requiring experience, error-prone process
- Block designs
 - Drag-and-Drop, connection automation, library of ready to use, configurable components (IP Cores)
- High Level Synthesis
 - Component development in C/C++/OpenCL
 - Compilation into AXI encapsulated HDL IP Core
- Algorithmic/data processing components in HLS
- Hardware interfacing in HDL
- Full flow, integrated environmets

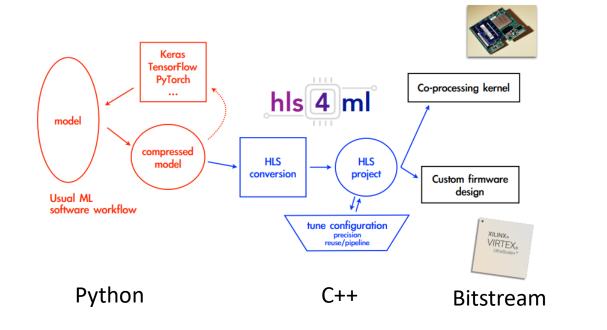




Development in HLS

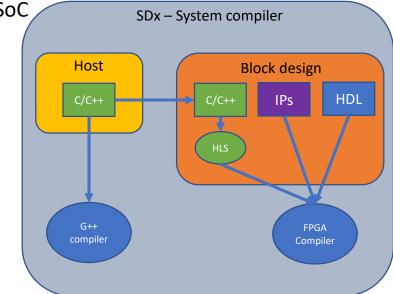
- Single function single component
 - Function arguments become component interface
 - Function body translated into logic
 - Results analysis with a set of reports
 - Timings, resources
 - Compilation process controlled with a set of #pragmas
 - High level component evaluation

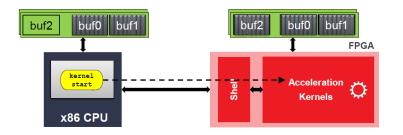
	Latency			Initiation Interval			
Loop Name	min	max	Iteration Latency	achieved	target	Trip Count	Pipelined
- Loop 1	1568	1568	290	1	1	1280	yes
 data_out_transfer 	514	514	4	1	1	512	yes


Utilizatio	n Estimates
othizatio	Louinaces

Name	BRAM_18K	DSP48E	FF	LUT	URAM
DSP	-	-		-	
Expression	-	-	0	237	
FIFO	-	-		-	
Instance	150	2596	505116	290902	
Memory	0	-	512	0	8
Multiplexer	-	-		352	
Register	0	-	24049	320	
Total	150	2596	529677	291811	8
Available	5376	12288	3456000	1728000	1280
Utilization (9	(6) 2	21	15	16	~0

HLS Example

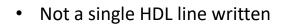

- Entire flow for Neural Network implementation on FPGA within a single HDL module
- Advantages: fixed latency, controlled level of parallelism, custom data types
- Used in L1 trigger at CMS CERN "Artificial Intelligence Accelerates Dark Matter Search", Xilinx Case Study 2019
- Import trained NN model to FPGA with just few mouse clicks
- MNIST network example implemented by students during FPGA Summer Camp 2019



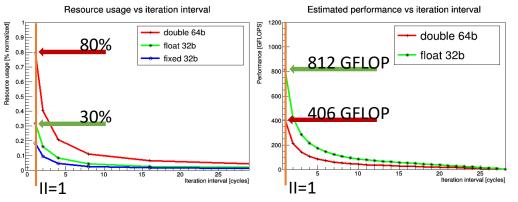
hls4ml

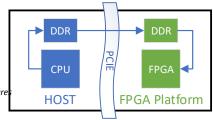
Software Defined Environment

- Large selection of hardware platforms on market
 - Standalone boards System-on-Chip devices SDSoC
 - Accelerator boards PCIe enabled SDAccel
- Development environment
 - Entire project in C/C++
 - Host <-> Kernel architecture
 - Main function starting point on the host
 - Kernel hardware accelerated function
 - Encapsulates all other tools and compilers
 - Multi-level evaluation: g++, hw emulation, hw

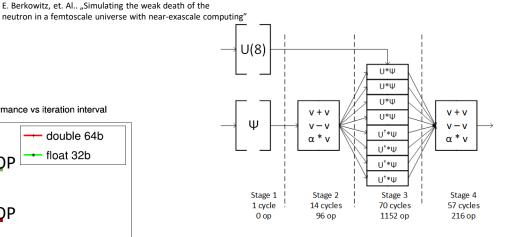


Application Pr	oject Setting	s			Active build configura	ation: Hardware	*
General				Options			
Project name:	su3_alveo_u280_	2		Target:	Hardware		
Platform:	xilinx_u280_xdma_201920_1			Host debug: Kernel debug:			
Runtime: OpenCL							
Number of devices: 1		- +	Report level:	Default		•	
			Hardware optimization:	Highest level of optimization	ı (-O3)	•	
lardware Functio	ns					B 🗄 🖻 🗡 🗙	
→ i binary_contai	ner 1						
∮ function1		1	Auto				
function2		1	Auto				




SDx Example

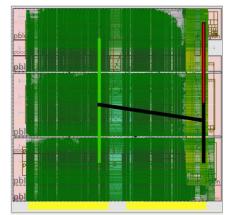
- Conjugate Gradient as HPC benchmark
 - Host prepares data sets and streams to the accelerated kernel
 - 1464 floating point numerical operations per single set
 - Kernel implemented with II=1, latency 142 at 300 MHz
 - 2x faster than Intel Xeon Phi 64-core, 1.7 GHz
 - Reaching Nvidia V100 (only 15% of PP!)

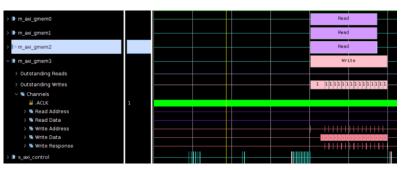


• Close cooperation with Xilinx

S. Durr, "Three Dirac operators on two architecture with one piece of code and no hassle", LATTICE2018, arXiv:1808.05506v2, Nov. 2018

1464 operations Within 142 clock cycles With II=1

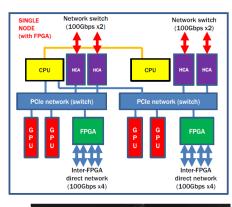



SDx Example

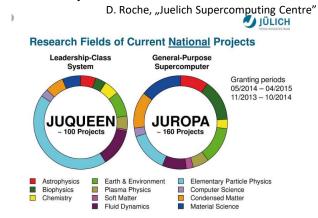
- Conjugate Gradient implementation
 - Alveo U280
 - 8GB of integrated HBM memory
 - 32x channels: 512b @ 300 MHz each (460GBps)
 - QSFP connector for large scale systems (t.b.d.)
 - 32 GB externel DDR4
 - 1 M LUTs, 9k DSP, 960 URAM
 - 250W
 - Alveo U50 (to be released)
 - No DDR4, 75W
 - Host and kernel code in C++
 - Abstract code structures (structures, classes)
 - OO mechanisms: operators overload, inheritance, templates
 - OpenCL bindings for C++
 - System definition
 - Data transfer mechanisms
- 3 kernel instances, 70% device usage
- Executed on hardware (Nimbix cloud)

G. Korcyl, P. Korcyl, *"Towards Lattice Quantum Chromodynamics on FPGA devices"*, Computer Physics Communications 2019.107029, Nov. 2019

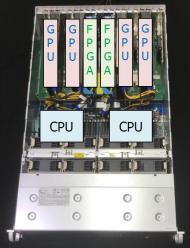
3 instances + data movement infrasctructure


2x JPET processing pipeline

1 kernel instance =

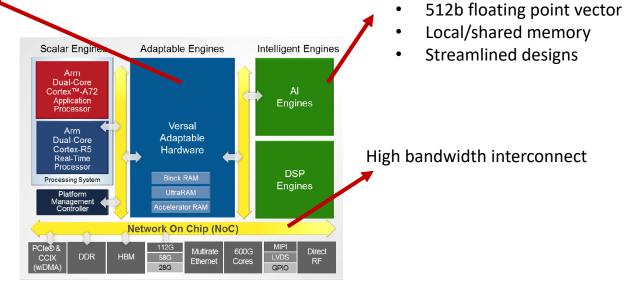

HPC Example

• Cygnus – Center for Computational Sciences, Tsukuba, Japan



T. Boku, "Japanese Supercomputer development and hybrid accelerated supercomputing"

Xilinx.com



What is next to come

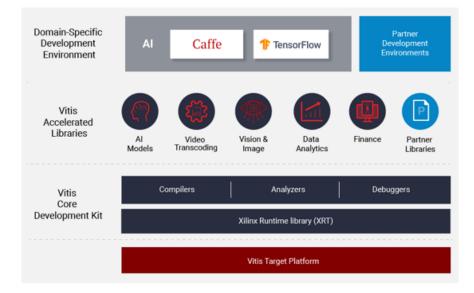
7nm Versal Architecture

General CLB resources:

- 4x larger blocks (32 LUTs)
- Less routing
- Higher frequencies

Interconnected vector SIMD:

1GHz frequency

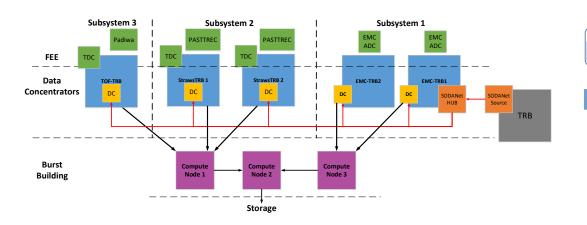

•

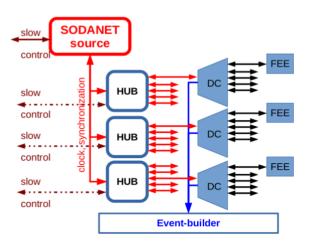
Xilinx.com

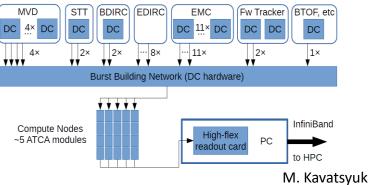
What is next to come

- Vitis Unified Software Platform
 - Integration of compilers
 - Integration of libraries
 - Python/C/C++ entry language
- HPCG project imported, compiled and evaluated on Nimbix one day after release
- Working with Xilinx on including our HPCG implementation in the set of libraries

Summary


- Disadvantages:
 - Low level design
 - Integrated ARM cores / softcore processors
 - Difficult firmware development
 - High Level Synthesis
 - Time consuming development and evaluation cycle
 - Accelerated evaluation with C-based tests
 - High costs of single devices and of hardware development
 - Wide-range of products available on market
- FPGAFAIS group
- FPGA Summer Camp
- Sympozjum FPGA




Future of PANDA

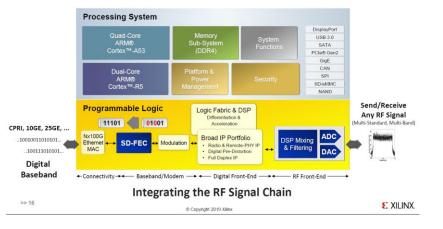
- Launch in 2025
- Cracow involved in:
 - Straw trackers readout
 - Data acquisition system
- DAQ playground for new concepts
- Successful beamtime at Juelich 2019


M. Kavatsyuk

Future of PANDA

- Basic readout system accepted, evaluated and verified
- Upgrade readout for Straw trackers founds secured
 - Production and evaluation of ASICs
 - ASIC AGH, cards UJ
 - Development of next generation of readout system
 - TRB platform cooperation with GSI
 - Time measurement
 - Communication and synchronization features
 - Development of online tracking procedures
 - FPGA / GPU




• <u>https://www.youtube.com/watch?v=PnDv_iij5Po</u>

What is next to come

- ZYNQ RFSoC
 - Integrated DAC and ADC channels

