

Münster PANDA Jet-Target Activities Report 03/2020

PANDA Collaboration Meeting 2020/1 GSI Darmstadt, Germany

Benjamin Hetz WWU Münster

Bundesministerium für Bildung und Forschung Institut für Kernphysik WWU Münster

living.knowledge

Content

- Results of last year's COSY beam times
 - Beam quality
 - COSY beam influence on the jet beam
- Tests of a second, differential pumping stage for the source planned
- Vacuum simulation of HESR/PANDA vacuum
 - Different IP configurations
 - Influence of MVD inside HESR vacuum
- A cryopump for the HESR/PANDA beam line

Münster PANDA Jet-Target Activities Report 03/2020

Recapitulation: Measurements 08/2019 @ COSY

- • 2 isotherm, 1 isobar measured:
 - Different cluster sizes
 - Different cluster production processes
 - From gaseous/supercritical/liquid phase of hydrogen
 - Everything in dependence of 3 proton beam currents
 - $(2 \times 10^{10} / 0.6 \times 10^{10} / 0.3 \times 10^{10})$ protons
 - Using stochastic cooling module of HESR installed at COSY
 - Using COSY barrier bucket

Recapitulation: Measurements 08/2019 @ COSY

Uster-jet

- Measurement of optimal beam-jet overlap by wobbling over the jet beam
- Measure WASA rate
 - Jet position inside pipe
- IPM giving COSY beam diameter
 - Unfolding -> jet diameter
 - Agrees with calculation and other means of jet beam measurements

Recapitulation: Lateral Momentum Spectrum

- Freq. spectrum measured using Schottky-Detector of HESR Pick-Up
 - Frequency -> lateral momentum
- Bucket only:
 - > wide lateral spectrum
 - Spectrum shift due to energy loss if COSY beam is hitting target
- Bucket and stochastic cooling:
 - Lateral momentum width getting smaller and stable frequency
 - Particles outside of the barrier bucket:
 - Cannot be cooled optimal/sharp edge
 - HESR situation: Better bucket/more cooling power

Münster PANDA Jet-Target Activities Report 03/2020

1.5596

0.2

0.0

1.5594

1.5595

1.5597 Frequency/MHz

Spectrum Analysis

- Beam acceleration
- Bucket on: Synchrotron oscillations visible
- Stochastic cooling on: decrease in lateral momentum spectrum width
- Comparison between spectrum with and without stoch. cooling:
 - signal suppression

Münster PANDA Jet-Target Activities Report 03/2020

Spectrum Analysis

- Reason for signal suppression is the feedback system created by the HESRkicker/HESR-pickup/p-beam
- Closed loop operation of cooling:

- Shielding factor with dispersion-like term
- True signal given by measuring with cooling turned off for only a short time in cycle
- Upcoming COSY beam times: In cycle measurements with pickup from 'old' COSY cooling system -> no closed feedback loop to HESR tanks

Münster PANDA Jet-Target Activities Report 03/2020

Beam Quality Measurements

Benjamin Hetz – WWU Münster – PANDA Collaboration Meeting 2020/1

Beam Quality Measurements ∆p/p

- ☆ More thickness -> smaller △p/p value?
 - Effect clearly visible for high proton currents (red triangles)
 - Cooling adjustments for each p current/ target thickness setting necessary (red box bad/green good)

- More protons -> larger $\Delta p/p$ value
- ✓ $\Delta p/p = 1.2 \times 10^{-4}$ at $\rho = 6.6 \times 10^{14}$ atoms/cm²
- Measurements with higher target thicknesses will be done in 2020 COSY beam time
- ✓ Optimized stochastic cooling tank

Mean Momentum Stability $\delta p/p$

- Stochastic cooling was optimized for $\rho=5 \times 10^{14}$ atoms/cm²
 - $\delta p/p < 3 \times 10^{-6}$ (preliminary)
- **Next beam time:** Test with new auto tune function for stochastic cooling parameters and more precise manual tuning by cooling crew needed

- The need of optimal adjustment becomes obvious in the mean momentum stability
- Going to higher thicknesses to test if instability is an adjustment effect or if cooling test tank has reached its limit at COSY

Cluster Energy Deposition Proton beam horizontal wobbling Inter int with low thickness

- -> small clusters
- During beam-target overlap: •
 - Increase in pressure and detector rates
- Calculated energy deposition: .
 - $E_{dep} = 12 \text{ meV/atom} (> E_{vdW} = 0.2 \text{ meV for H}_2)$
 - < 2% of E_{dep} needed for "evaporation"
- Important to have a look at cluster sizes given by \geq 10¹⁵ atoms/cm² thicknesses at next beam time
- Effect negligible at higher target thicknesses? \geq

Residual Gas from Jet-Source

- Beam Dump not most important source of residual gas at IP (measured at Münster and COSY)
- Measurement of gas flow from jet source at COSY
- Production of secondary, differential pumping stage at jet-beamline connection point
 - Simple prototype for COSY operation
- Installation at next maintenance phase
- Test at next COSY beam time

- Residual gas background at interaction point not dominated by jet source and dump gas (back-)flows. Other sources for vacuum conditions?
- From interest vacuum measurements at COSY using the PANDA target at different stagnation points
- Need to understand vacuum situation by other means than simple geometrical simplifications of PANDA geometry and vacuum conductions and measurements
 - Use of MolFlow+ (molflow.web.cern.ch) for simulation of complex vacuum installations

- Calculation of pressures, conductance by means of Monte Carlo test particles
 - Pressure is equivalent to number of wall hits at given gas velocity
 - No assumption of conductance of non simple forms because single particles (bunches) are tracked

- Realistic particle generation with correct Maxwell-Boltzmann velocity distribution
- Realistic rebound angle distribution on walls
- Temperature of gas variable, and non isotropic temperatures gradients on walls etc. possible

Münster PANDA Jet-Target Activities Report 03/2020

- Complex forms with correct conductance, temperatures etc. possible
- Direct import of CAD models
- Directed gas flows possible, creation of angular gas distribution maps
- Simulation of vacuum pump ports possible

Simulation of PANDA Vacuum Situation

- Vacuum simulation of concrete PANDA system model
- With/without directed gas beam (no clusters!)
- Simulation studies of jet beam influence on vacuum by adding an "evaporation" mask to the gas beam
- Simulations agree with measurements of beam dump vacuum conditions and flows

Münster PANDA Jet-Target Activities Report 03/2020

- Different IP configurations simulated with and without cryopump inside proton beam line
- Pumping speed of cryopump: 27500 l/s

- Difference without cryo pump:
 - **140 mm** and **150 mm** upstream beam pipe
 - Normal IP design

- Small difference in pressure/integrated thickness
- Diameter effects on thickness at z > 0 cm:
 - Due to better conductance at z < 0 cm
 - Less gas downstream

- Cryopump reduces thickness $\sim \rho = 3 \times 10^{14} \text{ atoms/cm}^2$
- Big IP alone: $\sim \rho = 1 \times 10^{14} \text{ atoms/cm}^2$
- Reduction is additive, not multiplicative

Münster PANDA Jet-Target Activities Report 03/2020

MVD Inside PANDA Beam Line

- Larger pipe -> MVD inside HESR vacuum
- Suggestions of possible MVD layouts by Miriam Fritsch
- Arbitrary geometries possible using Molflow+
- Does the MVD inside the beam line reverse all effects?

MVD Inside PANDA Beam Line

- Simulation show nearly no difference between beam pipe w/ and w/o MVD
- Also there is no big difference between both MVD designs

- Does the MVD inside the beam line reverse all effects?
 - > No (negligible)

Developments of a Cryopump for PANDA

- Vacuum simulation showed the influence of a cryopump inside the beamline
- Christian Mannweiler, PhD student, started on this topic concerning:
 - > Simulation of best charcoal sheet design for optimal pumping speed/size ration
 - > Minimal temperature, insulation/shielding calculations and measurements
 - \succ Calculations and measurements of impedances and influences on the \overline{p} -beam
 - Gas capacity and regeneration cycle frequency

Summary

- Results of last year's COSY beam times:
 - Lateral p-beam momentum resolution: $\Delta p/p = 1.2 \times 10^{-4}$ and
 - Mean momentum stability: δp/p < 3 x 10⁻⁶ for > 6 x 10¹⁴ atoms/cm² possible
 - COSY beam influence onto the jet beam visible by pressure increase (minimal effect)
 - More test in upcoming (already granted) COSY beam times.
- Tests of a second, differential pumping stage for the source planed at COSY
- Vacuum simulation of HESR/PANDA vacuum using Molflow+:
 - Different IP configurations -> larger upstream pipe, cryopump inside HESR beam line
 - Influence of MVD inside HESR vacuum minimal
- Development and simulation of a cryopump prototype for PANDA started