

The HIP Alignment Method

June 14, 2010 | T. Randriamalala, J. Ritman, T. Stockmanns and H. Xu

Outline

- 1. Introduction and Motivation
- 2. Basic Formalism
- 3. Simulation
- 4. Outlook

Introduction

- Develop an algorithm that can be used for detector alignment esp. planar sensors (MVD, LMD,...)
- Find the correct position of the detector (or its individual component) by calculating the 6 parameters (3 for the translation and 3 the rotation) of the transformation from the GCS to LCS.
- This can be achieved by using the "Hits and Impact Points (HIP) Alignment Method".

Basic Formalism of the HIP Alignment Method

It is consisting on finding the correct transformation by minimizing of the hit residuals $q_m(u_m, v_m, 0)$ of the measured point and $q_x(u_x, v_x, 0)$ of the track impact point in LCS (\hat{W} , the 3rd component unit vector, is perpendicular to the detector plane).

$$\chi^{2} = \sum_{j}^{Ntrack} \varepsilon_{j}^{T} V_{j}^{-1} \varepsilon_{j}$$

where: $\varepsilon = \begin{pmatrix} \varepsilon_{u} \\ \varepsilon_{v} \end{pmatrix} = \begin{pmatrix} u_{x} - u_{m} \\ v_{x} - v_{m} \end{pmatrix}$

 $V_{j} \;$ is the sum of measured and impact point positions covariance matrices of track j.

The Alignment Parameters

The correct total transformation from the GCS to the LCS:

$$\begin{split} q = & \Delta RR \left(r - r_0 \right) - \Delta q \\ \text{where: } q \left(u, v, w \right) \quad \text{: point coordinates in LCS,} \\ r \left(x, y, z \right) \quad \text{: point coordinates in GCS,} \\ r_0 \left(x_0, y_0, z_0 \right) \text{: origin coordinates of LCS in GCS,} \\ R = & R_\alpha R_\beta R_\gamma \quad \text{: (ideal) rotation matrix,} \\ \Delta R = & R_{\Delta\alpha} R_{\Delta\beta} R_{\Delta\gamma} \quad \text{: corrective rotation matrix,} \\ \Delta q = & \Delta RR\Delta r = \left(\Delta u, \Delta v, \Delta w \right) \text{: corrective translation.} \end{split}$$

 $p = (\Delta u, \Delta v, \Delta w, \Delta \alpha, \Delta \beta, \Delta \gamma)$ is the alignment parameter.

The alignment corrections are expected to be small, the fitted trajectories can be approximated with a straight line in a vicinity of the detector plane. The line equation is :

$$r_s = r_x + h\hat{s}$$

As a consequence, $q_s(h) = \Delta RR(r_x + h\hat{s} - r_0) - \Delta q$

- r_x is the trajectory impact point on the detector,
- \hat{s} is the unit vector parallel to the line,
- h is a parameter which satisfies $q_s(h_x)$. $\hat{w}=0$

Finally:

$$q_{x}^{c} = \Delta R q_{x} + (\Delta w - [\Delta R q_{x}]_{3}) \cdot \frac{\Delta R \hat{t}}{[\Delta R \hat{t}]_{3}} - \Delta q$$

"c" indicates the corrected position after the alignment, "3" indicates the 3rd component, $\hat{l}=\hat{R}\hat{s}$ is the uncorrected trajectory direction in LCS

Residuals Expressions

The matrix rotation following the zxz convention van be written as :

$$\Delta R = \begin{pmatrix} 1 & \Delta \gamma + \Delta \alpha & 0 \\ -\Delta \gamma - \Delta \alpha & 1 & \Delta \beta \\ 0 & -\Delta \beta & 1 \end{pmatrix}$$

Therefore :

$$\varepsilon_{u} = u_{x} - \Delta u + (\Delta \gamma + \Delta \alpha) v_{x} + (\Delta w + \Delta \beta v_{x}) \tan \psi - u_{m}$$

$$\varepsilon_{v} = v_{x} - \Delta v - (\Delta \gamma + \Delta \alpha) u_{x} + (\Delta w + \Delta \beta v_{x}) \tan \theta - v_{m}$$

where: $tan\theta = \hat{t}_2 / \hat{t}_3$ (θ is the angle between uw-plane and the track) $tan\psi = \hat{t}_1 / \hat{t}_3$ (ψ is the angle between vw-plane and the track)

Simulation Studies

Initial geometry: 4 layers of Silicon Strip Sensors parallel to xy-plane and have axis the z-axis

```
geometry modified : at the 4<sup>th</sup> plane
' x-shift : -0.0284 cm
' y-shift : 0.0279 cm
' z-shift : 0.0 cm
' φ = 50 mrad
' θ = 20 mrad
' ψ = 25 mrad
```

100000 proton tracks at 1000GeV/c (to minimize the effect of scattering) are generated. So,

$$V_{j} = V = \begin{pmatrix} \sigma_{x}^{2} + \sigma_{m}^{2} & 0 \\ 0 & \sigma_{x}^{2} + \sigma_{m}^{2} \end{pmatrix} = \begin{pmatrix} \sigma_{m}^{2} & 0 \\ 0 & \sigma_{m}^{2} \end{pmatrix}$$
$$\sigma_{m} = pitch/\sqrt{12} \quad : \text{ error from the digitization}$$

Result

	Displacement
$\Delta x(cm)$	-0.0284
Δy(cm)	0.0279
φ(mrad)	50
θ(mrad)	20
ψ(mrad)	25

Params	Values
Δu(cm)	0.0277(6.87e-06)
Δv(cm)	- 0.0274 (6.80e-06)
$\Delta \alpha$ (mrad)	- 49.99 (3.63e-04)
Δβ(mrad)	- 19.32 (1.37e-03)
Δγ(mrad)	- 22.62 (1.54e-04)

Outlook

- Use the algorithm for experimental data (Bonn TS beam test at COSY) : test algorithm for more than one plane.
- Calcul of the covariante matrix for relative lower beam momenta