Status of Calibration Studies at COSY

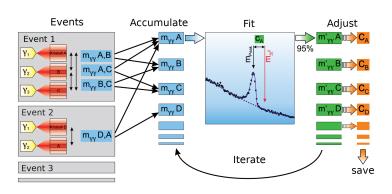
Lukas Linzen

Ruhr-Universität Bochum Institut für Experimentalphysik I

PANDA-Meeting 2020-1

11.03.2020

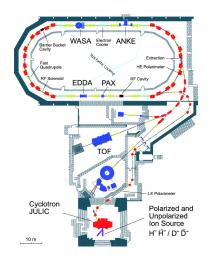
RUHR UNIVERSITÄT BOCHUM



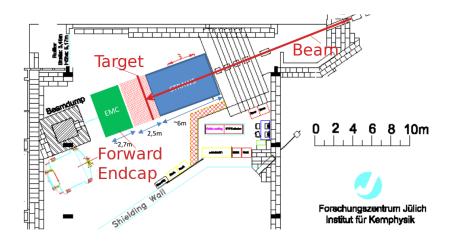
Overview

- PANDA calibration algorithm
- \bullet Pre-calibration of the forward endcap in Jülich with γ from π^0 decays
- pp and pn cross sections
- Event generation with Pluto (used and developed by HADES)
- First look to angular distributions of photons

Calibration Algorithm



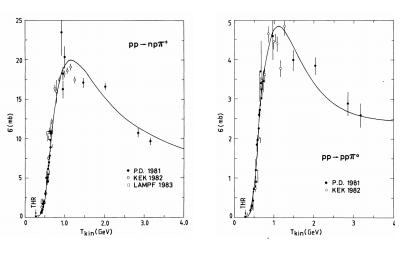
Roth, Phd thesis Bochum, 2012


- Must accumulate sufficient statistics for central crystals of clusters
- Must obtain reasonable signal to (combinatoric) background ratio

Pre-calibration at COSY

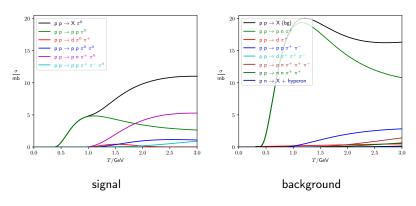
- Pre-calibration at Cooler Synchrotron in Jülich
- Forward endcap in TOF hall:
- $\dot{N}_{p} = 10^{5} \,\mathrm{s}^{-1} 10^{10} \,\mathrm{s}^{-1}$
- $d_{\text{beam}} \simeq 1 \, \text{cm}$
- Likely PET [(C₂H₄)_n] as string or foil target
- \rightarrow pp and pn scattering

Installation of the Forward Endcap in Jülich

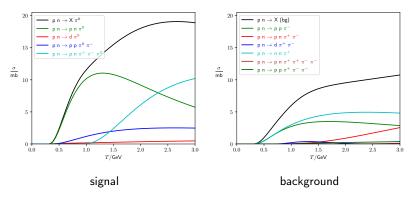

Triggerless Readout

- Triggerless readout of endcap
 - ightarrow Limitation assumed to be in the order of 1000 events per second written to disk
 - Target geometry will be chosen according to expected rates
- \Rightarrow Study differential cross sections of π^0 production in pp and pn scattering at COSY energies

Cross Sections

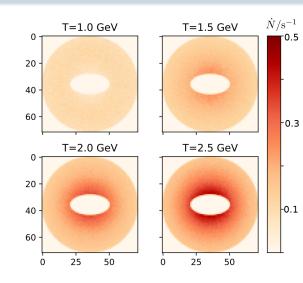

- Generalized Laguerre polynomials fitted to published cross sections
- Parametrizations implemented as Pluto plugin
- Cross section for any given energy and process can be calculated and used in Pluto

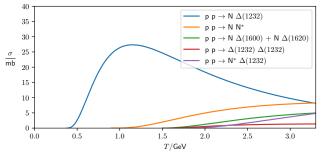
Implemented **pp** Cross Sections


Bystricky et al., J. Phys. France 48, 1901-1924 (1987)

Implemented **pp** Cross Sections

Bystricky et al., J. Phys. France 48, 1901-1924 (1987)


Implemented **pn** Cross Sections


Bystricky et al., J. Phys. France 48, 1901-1924 (1987)

Differential Rates of 2γ -Events

- ullet For first analysis differential rates calculated based on γ kinematics from generator
- Luminosity assumed to be in the order of $\mathcal{L} \simeq 10^{29} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$
- Bin size approximately represents crystal size
- Needs detailed simulations including detector response

N^* and Δ Resonance Production in pp Scattering

Bleicher et al., J. Phys. G 25, 1859-1896, (1999); Jain et al., Nucl. Phys. A 519, 697-720, (1990); Shimizu, Nucl. Phys. A 386, 571-588, (1982)

- Angular distributions for π^0 (and γ) produced in Δ and N* decays differ from those obtained from PHSP events
- Parametrizations also implemented as Pluto plugin

Summary and Outlook

- Goal: Study optimal beam energy and needed beam time for successful pre-calibration using pp and pn scattering at COSY
- pp and pn cross sections implemented for use with Pluto
 - ullet including Δ and N^* production in pp scattering
- To be done:
 - Generate resonant production events for pn
 - Simulation of detector response with Panda Root
 - Choose target geometry according to luminosity