Study of backgrounds for Drell-Yan process (µ+µ- case)

A.N.Skachkova (JINR, Dubna)

(V.A. Matveev, R.M. Muradian, A.N Tavkhelidze, JINR-P2-4543, JINR, Dubna, 1969; SLAC-TRANS-0098)

process, called also as Drell-Yan

(S.D. Drell, T.M. Yan, SLAC-PUB-0755, Jun 1970,12p.; Phys.Rev.Lett. 25(1970)316-320, 1970)

The dominant mechanism of the I+I⁻ production is the perturbative QED/QCD partonic 2 -> 2 process

$$q_i q_i -> \gamma^* / Z^\circ -> |+|^-$$

 $\sigma = 4.6 * 10^3 pb$

PYTHIA 6.4 simulation for the E _{cms} = 5.474 GeV

For the Luminosity L = 2×10^{32} cm⁻²s⁻¹ with assumption of the 10^7 sec/year beam operation we expect up to 9.2 x 10^7 Drell-Yan events/year

Background muons

We allow particles decay (and produce muons) in the volume before Muon (Range) System : cylinder radius R = 1440 mm, size from the centre along Z axis L = 2505 mmand we do search for muons in the angle region $5^{\circ} < \Theta < 137^{\circ}$.

<u>We assume also 100% π/μ rejection in muon system.</u>

The most probable <u>parents</u> of bkg <u>muons</u> are <u>charged</u> π and K

The most probable <u>grandparents</u> of bkg <u>muons</u> - are «string» (Lund model), $\rho^0, \rho^+, K^0_{\ s}, K^{*0}, K^+, \eta^{+}$

Here we consider 2 kinds of backgrounds: hard QCD and Minimun-bias events

Hard QCD subprocesses are:

The main contributions come from the following partonic subprocesses:

- $q + q' \rightarrow q + q'$ (gives 19.1% of QCD events with the $\sigma = 1.39$ mb);
- $q + g \rightarrow q + g$ (gives 51.1% of QCD events with the $\sigma = 3.73$ mb);
- g + g --> g + g (gives 28.6% of QCD events with the $\sigma = 2.09$ mb); • & $q + qbar --> q + qbar (\sigma = 0.016$ mb); q + qbar --> g + g ($\sigma = 0.052$ mb); g + g --> q + qbar ($\sigma = 0.018$ mb);

For QCD background $S/B \simeq 6.5 \times 10^{-7}$

The main source of background for the $\neg q q \rightarrow \gamma^* \rightarrow \mu^+\mu^-$ are the Minimum-Bias processes:

- **Low PT scattering** (gives 90% of events with the σ = **33.68** mb);
- Single diffractive (gives 9.2% of events with the σ = 3.44 mb);
- **Double diffractive** (gives 2.7% of events with the $\sigma = 0.25$ mb);

For Mini-bias background S/B \simeq 1.2 x 10⁻⁷

Effective cut off on E(P) is in the region $E(P)^{\mu}_{bkg} < \sim 2 \text{ GeV}$ where is the maximum gradient in $E(P)^{\mu}_{bkg}$ distribution The most effective cuts off are in the region PT^μ_{bkg} < 1.0 GeV (PT^μ_{bkg} = 0.7 GeV)

Invariant mass cut

Together with (after) the cut E > 0.5, PT > 0.3 GeV Supposing 100 % - without Minv cut

Cut on M ^{µµ} _{inv} >	Rest of BKG	Cut efficienc y	Rest of sig	Cut effici ency	S/B
1.0 GeV	13.3 %	7.48	97.5 %	1.02	0.0035
1.5 GeV	0.66 %	150.9	18.0 %	5.0	0.014
2.0 GeV	0.02 %	4483	3.70 %	27	0.078

The most effective cut is in the region ~ **1 GeV**. The peak at 1 GeV for DY is caused by some internal PYTHIA restrictions.

Further increase of Minv cut has no sense for Minimum-bias background events (it leads to significant loss of signal events without real improvement of S/B ratio).

E^μ/PT^μ correlations for muons with max(fast)/min(slow) **E^μ in the pair**

PT ^µ _{Emax} > 0.7 GeV can also be considered

Cut on $PT\mu > 0.3$ GeV and $E(P)\mu > 0.5$ (1.0, 1.5) GeV

E_{max}(fast) /E_{min}(slow), PT_{fast}/PT_{slow}, PT_{max}/PT_{min} distributions

S

G

B

Κ

G

PT > 0.3 GeV

Anna Skachkova: "Study of background for Drell-Yan process", PANDA CM 20/1, Darmstadt 9-13.02.2020

PT_{vecsum} < 0.2 GeV

Proposed cuts

- 1. Events with only 2 muons with
 - PT₁ > 0.3 GeV, E(P)₁ > 0.5 GeV
- 2. Muons are of the opposite sign
- **3.** Minv (l +, l -) > 1.0 GeV
- **4.** PT^µ_{Emax} > 0.7 GeV
- **5.** E_{sum} >15.8 GeV, P_{vecsum} >14.8 GeV, PT_{vecsum} < 0.2 GeV
- 6. Isolation criteria $E^{sum}_{(R \text{ isolation } = 0.2)} > 0.5 \text{ GeV}$
- 7. The vertex of origin lies within the distance from the interaction point < 1 (25) mm</p>

Cuts separate efficiency for minimum-bias background events (10⁹)

Efficiency Eff (K,N) = Nev(cutN) / Nev(cutK)

N of cuts	S/B ratio	Efficiency for BKG	Rest of BKG	Efficiency for SIG	Rest of SIG
1 <i>Exactly 2µ</i> with PT ₁ > 0.3 GeV, E(P) ₁ > 0.5 GeV	3.14 * 10 ^{- 4}	Eff (1,init) = 3879	2.6 x 10 ⁻² %	1.6	62.3 %
2 ⁺¹ 2µ are of the opposite sign	4.75 * 10 - 4	Eff (2,1) = 1.52	1.7 x 10 ⁻² %	1.6	62.3 %
3 ⁺²⁺¹ Μ _{inν} (μ ⁺ ,μ ⁻) > 1.0 GeV	3.47 * 10 - 3	Eff (3,2) = 7.48	2.3 x 10 ⁻³ %	1.02	60.8 %
4 ⁺³⁺²⁺¹ <i>PT^μ_{Emax}</i> > 0.7 GeV	2.01 * 10 - 2	Eff (4,3) = 6.92	3.3 x 10 ⁻⁴ %	1.2	50.7 %
5 ⁺³⁺²⁺¹ E ^{all} _{sum} > 15.8 GeV	1.94 * 10 - 1	Eff (5,3) = 105.4	2.2 x 10 ⁻⁵ %	1.9	46.1 %
6 ⁺³⁺²⁺¹ PT ^{all} < 0.2 GeV	6.49 * 10 - 3	Eff (6,3) = 2.59	8.8 x 10 ⁻⁴ %	1.4	32.3 %
7 ⁺³⁺²⁺¹ P ^{all} _{vecsum} > 14.8 GeV	1.10 * 10 - 1	Eff (7,3) = 58.23	3.9 x 10 ⁻⁵ %	1.8	43.8 %
8 ⁺³⁺²⁺¹ Isolation criterium	2.78	Eff (8,3) = 813.4	2.8 x 10 ⁻⁶ %	1.01	33.1 %
9 ⁺³⁺²⁺¹ R _{vertex} < 1 mm	1.89 * 10 - 1	Eff (9,3) = 55.13	4.1 x 10 ⁻⁵ %	1.01	60 %
10 ⁺³⁺²⁺¹ R _{vertex} < 25 mm	1.72 * 10 - 1	Eff (10,3) = 50.37	4.5 x 10 ⁻⁵ %	1.01	60 %

Vertex distributions

Still under big question the possibility of kink resolution in $\pi \rightarrow \mu \nu$ decay trajectory (which is ~ 1-3 degrees) (no manpower).

Most probable it will be very hard due to the Straw detector geometry, thus the criterium of muon vertex production point is very effective, but not realistic.

Summarized efficiency of subsequent cuts for minimum-bias background events (10⁹) Efficiency Eff (K,N) = Nev(cutN) / Nev(cutK)

PT^{all} vecsum and P^{all} cuts are correlated with the cut on E^{all} sum

Lepton (μ) isolation criteria

The plots show the distributions over summarized energy of the final state charged particles in the cones of radius $\mathbf{R}_{\text{isolation}} = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ respect to the **η –** pseudorapidity, φ — azimuthal angle) upper plot signal events bottom plot Mini-bias background Isolation criteria ($R_{isolation} = 0.2$) E (of particles) > 0.5 GeV allows to separate most part of Mini-bias & QCD bkg muons with the loss of < 0.7 % of signal events after applied cuts discussed above But! In PandaRoot shows tentatively worse results

π/μ rejection

Particle momentum	π/µ rejection	
0.5 — 1 GeV	~ 80 % (experiment with MS prototype)	EPJ Web Conf., 177 (2018) 04001
1 — 1.5 GeV	~ 90 % (assumption)	
> 1.5 GeV	~ 99 % (assumption)	

For 5λ of path length in iron.

In PANDA detector we have only $\sim 3\lambda$ path length (EMC+MS) in barrel (+ $\sim 5\%$ muon misidentification) and > 5 λ ($\sim 0.7\%$ misidentification) in forward region.

Cuts separate and summarized efficiency for Minimum-bias background events (10⁹)

Efficiency Eff (K,N) = Nev(cutN) / Nev(cutK)

N of cuts	S/B ratio	Efficiency for BKG	Rest of BKG	Efficiency for SIG	Rest of SIG
1 <i>Exactly 2µ</i> with PT ₁ > 0.3 GeV, <u>P₁ > 1.0 GeV</u>	1.01 * 10 - ³	Eff (1,init <mark>) = 17417</mark>	5.7 x 10 ⁻³ %	2.1	47.1 %
2⁺¹ 2μ are of the opposite sign	1.5 * 10 - 3	Eff (2,1) = 1.49	3.8 x 10 ⁻³ %	1.0	47.0 %
$3^{+2+1}M_{inv}(\mu^+,\mu^-) > 1.0 \text{ GeV}$	9.0 * 10 - ³	Eff (3,2) = 6.08	6.3 x 10 ⁻⁴ %	1.0	46.4 %
4 ⁺³⁺²⁺¹ <i>PT^μ_{Emax}</i> > 0.7 GeV	3.84 * 10 - 2	Eff (4,3) = 4.96	1.3 x 10 ⁻⁴ %	1.3	36.1 %
5 ⁺³⁺²⁺¹ E ^{all} _{sum} > 15.8 GeV	5.2 * 10 - 1	Eff (5,3) = 103.7	6.1 x 10 ⁻⁶ %	1.9	24.6 %
6 ⁺³⁺²⁺¹ <i>PT^{all}</i> _{vecsum} < 0.2 GeV	1.6 * 10 - 2	Eff (6,3) = 2.42	2.7 x 10 ⁻⁴ %	1.4	33.1 %
7 ⁺³⁺²⁺¹ P ^{all} _{vecsum} > 14.8 GeV	3.1 * 10 - 1	Eff (7,3) = 12.14	1.0 x 10 ⁻⁵ %	1.8	25.4 %
8 ⁺³⁺²⁺¹ Isolation criterium	9.5	Eff (8,3) = 212.5	6.0 x 10 ⁻⁷ %	1.0	43.8 %
9 ⁺³⁺²⁺¹ R _{vertex} < 1 mm	2.8 * 10 ^{- 1}	Eff (9,3) = 33.3	2.0 x 10 ⁻⁵ %	1.0	43.8 %
10 ⁺³⁺²⁺¹ R _{vertex} < 25 mm	2.7 * 10 ⁻¹	Eff (10,3) = 30.1	2.1 x 10⁻⁵ %	1.0	43.8 %
5 ⁺⁴⁺³⁺²⁺¹ E ^{all} _{sum} > 15.8 GeV	1.76	Eff (5,4) = 75	7.0 x 10 ⁻⁷ %	1.6	22.7 %
8 ⁺⁴⁺³⁺²⁺¹ Isolation criterium	> 49	Eff (8,4) > 1275	< 1.0 x 10 ⁻⁷ %	1.0	36.0 %
8 ⁺⁵⁺⁴⁺³⁺²⁺¹ Isolation criterium	> 32	Eff (8,5) > 61	< 1.0 x 10 ⁻⁷ %	1.1	22.4 %

Cuts separate and summarized efficiency for Minimum-bias background events (10⁹)

Efficiency Eff (K,N) = Nev(cutN) / Nev(cutK)

N of cuts	S/B ratio	Efficiency for BKG	Rest of BKG	Efficiency for SIG	Rest of SIG
1 <i>Exactly 2µ</i> with PT _I > 0.3 GeV, <u>P_I > 1.5 GeV</u>	2.73 * 10 - ³	Eff (1,init) = 71772	1.4 x 10 ⁻³ %	3.0	32.7 %
2⁺¹ 2μ are of the opposite sign	3.99 * 10 - ³	Eff (2,1) = 1.46	9.5 x 10 ⁻⁴ %	1.0	32.6 %
$3^{+2+1}M_{inv}(\mu^+,\mu^-) > 1.0 \text{ GeV}$	2.08 * 10 - 2	Eff (3,2) = 5.35	1.8 x 10 ⁻⁴ %	1.0	32.2 %
4 ⁺³⁺²⁺¹ <i>PT^μ_{Emax}</i> > 0.7 GeV	8.37 * 10 ^{- 2}	Eff (4,3) = 4.26	4.2 x 10 ⁻⁵ %	1.3	25.2 %
5 ⁺³⁺²⁺¹ E ^{all} _{sum} > 15.8 GeV	9.54 * 10 - 1	Eff (5,3) = 80.9	2.2 x 10 ⁻⁶ %	2.0	16.1 %
6 ⁺³⁺²⁺¹ <i>PT^{all}</i> _{vecsum} < 0.2 GeV	3.37 * 10 - ²	Eff (6,3) = 2.14	8.3 x 10 ⁻⁵ %	1.6	21.5 %
7 ⁺³⁺²⁺¹ P ^{all} _{vecsum} > 14.8 GeV	6.66 * 10 - 1	Eff (7,3) = 53.9	3.3 x 10 ⁻⁶ %	1.9	16.9 %
8 ⁺³⁺²⁺¹ Isolation criterium	12.3	Eff (8,3) = 593	3.0 x 10 ⁻⁷ %	1.0	32.2 %
9 ⁺³⁺²⁺¹ R _{vertex} < 1 mm	3.42 * 10 - 1	Eff (9,3) = 16.5	1.08 x 10 ⁻⁵ %	1.0	32.2 %
10 ⁺³⁺²⁺¹ R _{vertex} < 25 mm	3.33 * 10 - 1	Eff (10,3) = 16.0	1.11 x 10⁻⁵ %	1.0	32.2 %
5 ⁺⁴⁺³⁺²⁺¹ E ^{all} _{sum} > 15.8 GeV	2.85	Eff (5,4) = 59.7	7.0 x 10 ⁻⁷ %	1.5	16.7 %
8 ⁺⁴⁺³⁺²⁺¹ Isolation criterium	> 35	Eff (8,4) > 418	< 1.0 x 10 ⁻⁷ %	1.0	25.2 %
8 ⁺⁵⁺⁴⁺³⁺²⁺¹ Isolation criterium	> 20	Eff (8,5) > 22	< 1.0 x 10 ⁻⁷ %	1.0	15.4 %

Cuts separate and summarized efficiency for QCD background events (10⁹)

Efficiency Eff (K,N) = Nev(cutN) / Nev(cutK)

N of cuts	S/B ratio	Efficiency for BKG	Rest of BKG	Efficiency for SIG	Rest of SIG
1 <i>Exactly 2µ</i> with PT ₁ > 0.3 GeV, <u>P₁ > 1.5 GeV</u>	3.67 * 10 ^{- 3}	Eff (1,init) = 20198	4.9 x 10 ⁻³ %	3.0	32.7 %
2⁺¹ 2μ are of the opposite sign	4.90 * 10 - 3	Eff (2,1) = 1.33	3.71 x 10 ⁻³ %	1.0	32.6 %
$3^{+2+1}M_{inv}(\mu^+,\mu^-) > 1.0 \text{ GeV}$	1.19 * 10 - 2	Eff (3,2) = 2.45	1.51 x 10 ⁻³ %	1.0	32.2 %
4 ⁺³⁺²⁺¹ <i>PT^μ_{Emax}</i> > 0.7 GeV	1.85 * 10 - 2	Eff (4,3) = 2.06	7.3 x 10 ⁻⁴ %	1.3	25.2 %
$5^{+3+2+1} E_{sum}^{all} > 15.8 \text{ GeV}$	6.76 * 10 - 1	Eff (5,3) = 87.5	1.7 x 10 ⁻⁵ %	2.0	16.1 %
6 ⁺³⁺²⁺¹ <i>PT^{all}</i> _{vecsum} < 0.2 GeV	2.51* 10 - 2	Eff (6,3) = 2.45	6.2 x 10 ⁻⁴ %	1.6	21.5 %
7 ⁺³⁺²⁺¹ P ^{all} _{vecsum} > 14.8 GeV	3.76 * 10 ⁻¹	Eff (7,3) = 48.2	3.1 x 10 ⁻⁵ %	1.9	16.9 %
8 ⁺³⁺²⁺¹ Isolation criterium	> 178	Eff (8,3) > 15141	< 1.0 x 10 ⁻⁷ %	1.0	32.2 %
9 ⁺³⁺²⁺¹ R _{vertex} < 1 mm	1.52	Eff (9,3) = 128.3	1.2 x 10 ⁻⁵ %	1.0	32.2 %
10 ⁺³⁺²⁺¹ R _{vertex} < 25 mm	1.27	Eff (10,3) = 107.4	1.4 x 10 ⁻⁵ %	1.0	32.2 %
5 ⁺⁴⁺³⁺²⁺¹ E ^{all} _{sum} > 15.8 GeV	0.94	Eff (5,4) = 77.1	9.5 x 10 ⁻⁶ %	1.5	16.7 %
8 ⁺⁴⁺³⁺²⁺¹ Isolation criterium	> 136	Eff (8,4) > 7328	< 1.0 x 10 ⁻⁷ %	1.0	25.2 %
8 ⁺⁵⁺⁴⁺³⁺²⁺¹ Isolation criterium	> 116	Eff (8,5) > 173	< 1.0 x 10 ⁻⁷ %	1.0	15.4 %

Cuts summarized efficiency for DPM&PandaRoot background events (2*10⁷)

(A.Semenov - preliminary)

Efficiency Eff (K,N) = Nev(cutN) / Nev(cutK)

N of cuts	S/B ratio	Efficiency for BKG	S/B ratio	Efficiency for BKG
	P ₁ > 1.0 GeV	P ₁ > 1.0 GeV	P ₁ > 1.5 GeV	P ₁ > 1.5 GeV
1 <i>Exactly 2μ</i> with PT ₁ > 0.3 GeV, P ₁ >	1.11 * 10 - 4	Eff (1,init) = 2248	1.18 * 10 - 4	5330
2⁺¹ 2μ are of the opposite sign	1.98 * 10 - 4	Eff (2,1) = 1.80	3.49 * 10 - 4	1.93
3 ⁺²⁺¹ M _{inv} (µ ⁺ ,µ ⁻) > 1.0 GeV	1.31 * 10 - ³	Eff (3,2) = 6.61	2.35 * 10 - ³	6.73
4 ⁺³⁺²⁺¹ <i>ΡΤ^μ_{Emax}</i> > 0.7 GeV	1.79 * 10 - 3	Eff (4,3) = 1.37	2.76 * 10 - 3	1.17
5 ⁺⁴⁺³⁺²⁺¹ E ^{all} _{sum} > 15.8 GeV	1.46 * 10 - 2	Eff (5,3) = 8.16	1.58 * 10 - 2	5.72

Cross section of DPM BKG δ = 44.23 mb \rightarrow S/B = 1.04 * 10⁻⁷. DPM&PandaRoot full generation shows for the moment >1 order worse BKG suppression result than pure PYTHIA.

To study isolation criterium influence increase of statistics is needed. Study of PYTHIA modeling together with PandaRoot is also planned.

Conclusion

The proposed cuts:

- 1. Events with only 2 muons with
- PT₁ > 0.3 GeV, E(P)₁ > 1.5 GeV
- 2. Muons are of the opposite sign
- 3. Minv (l +, l -) > 1.0 GeV
- **4.** PT^µ_{Emax} > 0.7 GeV
- 5. E_{sum}>15.8 GeV, P_{vecsum}>14.8 GeV, PT_{vecsum}< 0.2 GeV
- 6. Isolation criteria $E^{\text{sum}}_{(R \text{ isolation = 0.2})} > 0.5 \text{ GeV}$

Pure PYTHIA simulation estimates for DY (muon channel) QCD & Mini-bias bkgd suppresion up to S/B > 20-50 with the loss of signal ~ 70-85% ,

While DPM full generation for the moment shows at least 1 order worse result.

Further study and increase of statistics with PANDARoot (for DPM & PYTHIA generators) is needed

Drell-Yan process study at PANDA is still questionable