Study of Two-Photon Exchange From MAMI-A4 to PANDA

Boxing Gou for the A4 Collaboration

PANDA Collaboration Meeting 20/1, GSI, Darmstadt, Germany, March 9-13, 2020

Outline

- Proton form factor puzzle and two-photon exchange (TPE)
- How to investigate TPE
- TPE program at MAMI-A4
- Opportunities to study TPE at PANDA

Proton form factors

Generalized form factors

Elastic scattering of two spin-1/2 particles can be described by 6 amplitudes (form factors).
$\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}, \tilde{F}_{4}, \tilde{F}_{5}, \tilde{F}_{6}$
$>$ Small coupling (1/137) -> small higher order contributions
$>$ One-photon exchange approximation are regareded as sufficient
Form factors in Born approximation

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{E}}\left(\mathrm{Q}^{2}\right)=\mathrm{F}_{1}\left(\mathrm{Q}^{2}\right)-\tau \mathrm{F}_{2}\left(\mathrm{Q}^{2}\right) \\
& \mathrm{G}_{\mathrm{M}}\left(\mathrm{Q}^{2}\right)=\mathrm{F}_{1}\left(\mathrm{Q}^{2}\right)+\mathrm{F}_{2}\left(\mathrm{Q}^{2}\right)
\end{aligned}
$$

Form factors

- Dirac (F1) and Pauli (F2) form factors represent the helicity conserving and flip processes respectively
- Sachs form factors $\left(\mathrm{G}_{\mathrm{E}}, \mathrm{G}_{\mathrm{M}}\right)$ describe the charge and magnetization distributions

Methods for form factor measurement

Rosenbluth separation

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}=\left(\frac{\alpha \mathrm{E}^{\prime}}{4 \mathrm{MQ}^{2} \mathrm{E}}\right)^{2}\left|\mathcal{M}_{\gamma}\right|^{2}=\frac{\sigma_{\mathrm{Mott}}}{\epsilon(1+\tau)} \sigma_{\mathrm{R}} \\
& \sigma_{\mathrm{Mott}}=\frac{\alpha^{2} \mathrm{E}^{\prime} \cos ^{2} \frac{\theta_{\mathrm{e}}}{2}}{4 \mathrm{E}^{3} \sin ^{4} \frac{\theta_{\mathrm{e}}}{2}} \quad \text { (Point-like) } \\
& \tau=\frac{\mathrm{Q}^{2}}{4 \mathrm{M}^{2}} \quad \varepsilon=\left[1+2(1+\tau) \tan ^{2} \frac{\theta_{\mathrm{e}}}{2}\right]^{-1}
\end{aligned}
$$

Spin-transfer method

Phys. Rev. C 23, 363 (1981)

$$
\begin{aligned}
I_{0} P_{x} & =-2 \sqrt{\tau(1+\tau)} G_{E} G_{M} \tan \frac{\theta_{e}}{2} \\
P_{y} & =0 \\
I_{0} P_{z} & =\frac{E_{0}+E^{\prime}}{M} \sqrt{\tau(1+\tau)} G_{M}^{2} \tan \frac{\theta_{e}}{2} \\
I_{0} & =G_{E}^{2}\left(Q^{2}\right)+\frac{\tau}{\varepsilon} G_{M}^{2}\left(Q^{2}\right) \\
\frac{G_{E}}{G_{M}} & =-\frac{P_{t}}{P_{l}} \frac{E_{0}+E^{\prime}}{M} \tan \frac{\theta_{e}}{2}
\end{aligned}
$$

Proton form factor puzzle

- Discrepancy between Rosenbluth separation and spin transfer experiments.
- Failure of the Born approximation in electron scattering .

Proton form factor puzzle

- Discrepancy between Rosenbluth separation and spin transfer experiments.
- Failure of the Born approximation in electron scattering .
- A two-photon exchange (TPE) correction could explain the discrepancy.

Phys. Rev. Lett. 91 (2003) 142303
Phys. Rev. Lett. 91 (2003) 142304
Phys. Rev. Lett. 93 (2004) 122301

Proton form factor puzzle

- Discrepancy between Rosenbluth separation and spin transfer experiments.
- Failure of the Born approximation in electron scattering .
- A two-photon exchange (TPE) correction could explain the discrepancy.

Phys. Rev. Lett. 91 (2003) 142303
Phys. Rev. Lett. 91 (2003) 142304
Phys. Rev. Lett. 93 (2004) 122301

An understanding of TBE exchange is essential for other high-precision measurements

How to study TPE? Charge asymmetry

$$
R_{2 \gamma}=\frac{\sigma_{e^{+} p}}{\sigma_{e^{-} p}} \approx 1+\frac{4 \operatorname{Re}\left(\mathcal{M}_{\gamma}^{\dagger} \mathcal{M}_{2 \gamma}\right)}{\left|\mathcal{M}_{\gamma}\right|^{2}}
$$

Real parts of $\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}$

VEPP-3@Novosibirsk

CLAS@JLAB

How to study TPE? Transverse spin asymmetry

Azimuthal asymmetry

$$
\begin{gathered}
A_{\text {exp }}=\frac{\sigma^{\odot}-\sigma^{\otimes}}{\sigma^{\odot}+\sigma^{\otimes}}=A_{\perp} \frac{\vec{s} \cdot \vec{p}}{|\vec{s}||\vec{p}|}=-A_{\perp} \cos \varphi \\
A_{\perp} \propto \frac{\operatorname{Im}\left(\mathcal{M}_{\gamma}^{*} \mathcal{M}_{2 \gamma}\right)}{\left|\mathcal{M}_{\gamma}\right|^{2}}
\end{gathered}
$$

Nucl. Phys. B 35 (1971) 365.

Target Spin Asymmetry in e $\vec{N} \rightarrow e N$

- Imaginary parts of $\tilde{F}_{1}, \tilde{F}_{2}, \tilde{F}_{3}$
- $A_{\perp} \sim \alpha \sim 10^{-2}$
- HallA@JLab (pol. ${ }^{3} \mathrm{He}$ target)

Beam Spin Asymmetry in $\vec{e} N \rightarrow e N$

- Imaginary parts of $\tilde{F}_{3}, \tilde{F}_{4}, \tilde{F}_{5}$
- $A_{\perp} \sim \alpha \cdot \frac{m_{e}}{E} \sim 10^{-5}-10^{-6}$
- SAMPLE@MIT-Bates
- HAPPEX, GO, $Q_{\text {weak }}$ @JLab
- A4@MAMI

MAMI

Mainz Microtron (MAMI)

- Electron beam: $0.2-1.5 \mathrm{GeV}$, current $\sim 20 \mu \mathrm{~A}$
- Circularly polarized laser on GaAs \rightarrow longitudinally polarized electrons
- Wien filter + procession in micrtrons \rightarrow longitudinal / transverse
- Pol. state reverses every 20 ms , flip pattern follows either $\uparrow \downarrow \downarrow \uparrow$ or $\downarrow \uparrow \uparrow \downarrow$
- Energy, current, position and angle are stabilized and monitored

A4 experiment

Electromagnetic calorimeter

- $1022 \mathrm{PbF}_{2}$ crystals, 7 rings $\times 146$ frames $\rightarrow \varphi:(0,2 \pi)$
- Pure Cherenkov \rightarrow fast response (20 ns)
- Read out: sum of 3×3 crystals. $\Delta E / E \approx 3.9 \% / \sqrt{E[G e V]}$

High power liquid target

- Hydrogen
- Deuterium

Rotatable platform

- Forward
θ : $30^{\circ}-40^{\circ}$
$\mathrm{L}=10 \mathrm{~cm}, \mathcal{L}=0.5 \times 10^{38} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}$

Luminosity monitor

8 water Cherenkov counters ($4.4^{\circ}-10^{\circ}$)

A4 experiment

Electromagnetic calorimeter

- $1022 \mathrm{PbF}_{2}$ crystals, 7 rings $\times 146$ frames $\rightarrow \varphi:(0,2 \pi)$
- Pure Cherenkov \rightarrow fast response (20 ns)
- Read out: sum of 3×3 crystals. $\Delta E / E \approx 3.9 \% / \sqrt{E[G e V]}$

High power liquid target

- Hydrogen
- Deuterium

Rotatable platform

- Forward
θ : $30^{\circ}-40^{\circ}$
$\mathrm{L}=10 \mathrm{~cm}, \mathcal{L}=0.5 \times 10^{38} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}$
- Backward
θ : $140^{\circ}-150^{\circ}$
$\mathrm{L}=23 \mathrm{~cm}, \mathcal{L}=1.2 \times 10^{38} \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}$
Plastic scintillator to veto γ

Luminosity monitor
8 water Cherenkov counters ($4.4^{\circ}-10^{\circ}$)

Asymmetry extraction

- Integrate spectra under elastic peak $->N^{\uparrow}\left(N^{\downarrow}\right)$
- Raw asymmetry for each frame $A_{f}^{R a w}=\frac{N^{\uparrow}-N^{\downarrow}}{N^{\uparrow}+N^{\downarrow}}$
- Correct helicity related false aymmetry $A_{f}^{\text {Raw }} \rightarrow A_{f}$

False asymmetry caused by difference in

- Beam position $(\Delta X, \Delta Y)$
- Beam angle $\left(\Delta X^{\prime}, \Delta Y^{\prime}\right)$
- Beam current ΔI
- Beam energy ΔE

Corrected via regression analyses

$$
A_{\text {exp }}=P \cdot A_{p h y}+\sum_{i=1}^{6} a_{i} X_{i}
$$

- Fit A_{f} by $A_{f}=A \cos \left[\frac{2 \pi}{146} \cdot(f-0.5)\right]+C$

Asymmetry extraction

- Integrate spectra under elastic peak $->N^{\uparrow}\left(N^{\downarrow}\right)$
- Raw asymmetry for each frame $A_{f}^{R a w}=\frac{N^{\uparrow}-N^{\downarrow}}{N^{\uparrow}+N^{\downarrow}}$
- Correct helicity related false aymmetry $A_{f}^{\text {Raw }} \rightarrow A_{f}$

False asymmetry caused by difference in

- Beam position ($\Delta X, \Delta Y$)
- Beam angle $\left(\Delta X^{\prime}, \Delta Y^{\prime}\right)$
- Beam current ΔI
- Beam energy ΔE

Corrected via regression analyses

$$
A_{\text {exp }}=P \cdot A_{p h y}+\sum_{i=1}^{6} a_{i} X_{i}
$$

- Fit A_{f} by $A_{f}=A \cos \left[\frac{2 \pi}{146} \cdot(f-0.5)\right]+C$

Asymmetry calculation

QED

Calculation based on unitarity by B. Pasquini and M. Vanderhaeghen Phy. Rev. C 70, 045206(2004)

Ground proton state
G_{E} and G_{M} as input
$\pi \mathrm{N}$ intermediate states
Take $\gamma^{*} N \rightarrow \pi N$ amplitudes from MAID 2007 as input

A4 results: 2005

Kinematics	Energy \& Target
Hydrogen	

- Significant inelastic contribution

A4 results: 2005 ---> 2017

Phy. Rev. Lett. 119, 012501(2017)

- Significant inelastic contribution
- Backward data agree well with the theory

A4 results: 2005 ---> 2017 ---> 2020

Phy. Rev. Lett. 119, 012501(2017)

- Significant inelastic contribution
- Backward data agree well with the theory
- Tension between forward data and theory.

How to understand the discrepancy?

- We respect unitarity.
- More intermediate states ($\boldsymbol{\pi} \boldsymbol{\pi} \mathbf{N}, \boldsymbol{K} \boldsymbol{\Lambda}, \boldsymbol{\eta} \boldsymbol{N})$?
- MAID database needs improvement?

How to understand the discrepancy?

- We respect unitarity.
- More intermediate states ($\boldsymbol{\pi} \boldsymbol{\pi} \mathbf{N}, \boldsymbol{K} \boldsymbol{\Lambda}, \boldsymbol{\eta} \boldsymbol{N})$?
- MAID database needs improvement?
- New parity-conserving boson?

Opportunities at PANDA

In time-like region

$+\bullet \bullet$
G. I. Gakh and E. T.-Gustafsson, Nucl. Phys. A 761, 120 (2005) | M. P. Rekalo and E. T.-Gustafsson, Eur. Phys. A 22, 331 (2004)

Differential cross-section of $\bar{p}+p \rightarrow e^{+}+e^{-}$in CM frame

- One-photon-exchange (OPE) approximation \rightarrow even function of $\cos \theta$
- Consider both OPE and TPE \rightarrow contains odd terms $\left(\Delta G_{E}, \Delta G_{M}\right)$ of $\cos \theta$

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 q^{2}} \sqrt{\frac{\tau}{\tau-1}}\left[\left(1+\cos ^{2} \theta\right)\left(\left|G_{M}\right|^{2}+2 \operatorname{Re} G_{M} \Delta G_{M}^{*}\right)+\frac{1}{\tau} \sin ^{2} \theta\left(\left|G_{E}\right|^{2}+2 \operatorname{Re} G_{E} \Delta G_{E}^{*}\right)+2 \sqrt{\tau(\tau-1)} \cos \theta \sin ^{2} \theta \operatorname{Re}\left(\frac{1}{\tau} G_{E}-G_{M}\right) F_{3}^{*}\right]
$$

- TPE effects would change angular distrubutions
- Feasibility study has been performed | Eur. Phys. A44 373 (2010)
- The TPE contributions induce a deviation from straight line in the angular distribution

In space-like region

Transverse spin asymmetry

Beam asymmetry $\propto \frac{\operatorname{Im}\left(\mathcal{M}_{\gamma}^{*} \mathcal{M}_{2 \gamma}\right)}{\left|\mathcal{M}_{\gamma}\right|^{2}} \cdot \frac{m_{e}}{E} \sim 10^{-5}-10^{-6} \quad$ MAMI - A4
Target asymmetry $\propto \frac{\operatorname{Im}\left(\mathcal{M}_{\gamma}^{*} \mathcal{M}_{2 \gamma}\right)}{\left|\mathcal{M}_{\gamma}\right|^{2}} \sim \alpha \sim 10^{-2} \quad$ PANDA

With a polarized hydrogen target, TPE can be investigated in inverse kinematics by measuring transverse asymmetry in $\overline{\mathrm{p}}+\overrightarrow{\mathrm{e}} \rightarrow \overline{\mathrm{p}}+\mathrm{e}$

Charge asymmetry

- Compare cross section of $\bar{p}+e^{-} \rightarrow \bar{p}+e^{-}$and $p+e^{-} \rightarrow p+e^{-}$
- Need switch between proton beam and antiproton beam in HESR
- Beam can not be switched very frequently \rightarrow various systematic effects to handle

Summary

- Proton form factor puzzle \& two-photon exchange (TPE)
- Approaches to study TPE
$>$ Charge asymmetry
> Transverse spin asymmetry
- TPE investigation at MAMI-A4
- Opportunities to study TPE at PANDA

Thanks for your attention!

