

Giessen Cosmic Station - Status Update

<u>Simon Bodenschatz</u>, Lisa Brück, Michael Düren, Avetik Hayrapetyan, Jan Niclas Hofmann, Sophie Kegel, İlknur Köseoğlu Sarı, Jhonatan Pereira de Lira, Mustafa Schmidt, Marc Strickert

Online PANDA Meeting

March 10, 2020

Overview

Track Reconstruction

Track reconstruction via position measurement in two planes

Components

The test stand consists of

- Two scintillating plates defining a trigger
- Four layers of scintillating bars (track reconstruction)
- About 45 cm of lead in between the trigger plates (energy selection)

Tracking Boxes

Figure: One of the tracking boxes without lid.

Tracking Boxes

Geometry of the bars

- 48 bars (15 × 10 × 500 mm) in two half-layers shifted against each other
- Second layer rotated by 90° for position resolution along the other axis
- Every layer in a separate light-proof box

Trigger Plates

Figure: One of the 50 \times 50 cm^2 trigger plates with PMT-Readout.

Absorber

Role of the absorber

- Flight distance in combination with timing resolution insufficient for momentum selection
- Therefore energy discrimination via absorption in 45 cm lead

Absorber

Figure: Energy deposition in the trigger after passing though the lead (top), the Cherenkov angle range (bot) and the estimated threshold (red).

Wavelength cut: 200 nm $<\lambda<$ 800 nm // Energy deposition obtained from Monte Carlo.

Reconstruction - Acceptance

Figure: Angular acceptance with and without trigger.

Reconstruction - Expected Angular Resolution

Figure: Expected angular resolution (Monte-Carlo-Estimate).

Reconstruction - Expected Spatial Resolution

Figure: Expected spatial resolution (Monte-Carlo-Estimate).

Reconstruction - Resolution Verification

Testsetup ...

- Cross of two small scintillating bars
- Overlapping area of approx. $1, 8 \times 1, 8 \text{ cm}^2$

Figure: Schematic drawing of the finger counters and placement.

Reconstruction - Resolution Verification

Figure: Fit of the finger hits with a convoluted normal distribution.

Use Case I - Radiator Plate

Figure: The new radiator plate in preparation for optical measurements.

Use Case II - SiPM Array With Radiator

Figure: Test setup with SiPM-Array and aerogel radiator.

In the near future ...

- Improvement of the reconstruction algorithm
- Finish optical measurements, then cosmic tests with radiator and readout
- ▶ In parallel: Cherenkov measurements with SiPM array

Thank you for your attention!

Reconstruction - Spatial Acceptance

Figure: Spatial acceptance without trigger.

Simulation: Geant4 [1] with CRY [2] event generator.

 S.Agostinelli et al. (2007). Geant4-a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A.
Hagmann, Chris& Lange, David & Wright, Douglas. (2007). Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. IEEE Nuclear Science Symposium.

Reconstruction - Angular Acceptance

Figure: Angular acceptance without trigger.