

© R. Limbach, FZ Jülich

STT TRACKING ISSUES

PETER WINTZ, GABRIELA PEREZ (IKP, FZ JÜLICH)

Mitglied der Helmholtz-Gemeinschaft

Mar 10th, 2020 | PANDA Collaboration Meeting 2020/1

Tracking QA

Outline

- Simulation Experiment Data
- STT Detector Response
 - Hit Information
 - Inputs for Simulation
- STT Tracking
 - Hit Pattern w/o T0
 - T0 Determination

- Simulation: MC truth information
 - Comparison: reco track to true track, momentum, vertex, ...
- Experiment data: only hit information
 - Tracking QA information only: deviations of reco trajectory to isochrone hits (total χ^2 and/or individ. hits)
 - Calibration precision, efficiency and δ-electron hits .. and trackfit model enter
- Trajectory model & specific cases
 - Circle fit approximation: only if low dE/dx, low MS, no δ -hits ...
 - Circle segments: also higher dE/dx & MS (low momentum p/K tracks), treats B-field inhomogenuity
 - Curling tracks: only outer circle is precise \rightarrow skip inner hits
 - Borderline tracks: distortion of trajectory → skip border hits (DIRC/EMC)
- Tracking QA: needs clear separation between track model resolution and hit resolution

STT Detector Response

TDC Hit Information

- Straw hit information:
 - TDC channel no. \rightarrow straw no, (& layer no.) •
 - TDC LE-time (\rightarrow drift time after offset corr.) ۲
 - TDC TE-time (\rightarrow time-ovr-threshold)
- Build straw hits in simulation:
 - MC track \rightarrow generate straw hit map ۲
 - Determine which straw is hit by track (calc. track-to-wire distance) \rightarrow straw channel no.
 - Perp. distance to straw wire \rightarrow isochrone radius \rightarrow add smearing \rightarrow determine drift time: t_{dr} (r) = LE-time •
 - TDC-ToT from particle velocity (p/M) and testbeam data fit (next slide) \rightarrow TE-time = LE-time + ToT ۲
 - Optional: straw (in-)efficiency, noise, δ -electron hits (~ 10% in Argon)
- In future: add TDC/FPGA hit processing algos
 - at moment: single (earliest) hit within drift time window
 - add e.g. max number of hits per channel, per TDC, per board (e.g. curling tracks)

Time offset corrected

150

200

TDC LE-Time (ns)

ProjectionX of biny=[41,150] [y=40.0..150.0]

Number of Entries

300

250

200 150

100

STT Detector Response

TDC Times — Drifttime & Time-over-Threshold

- TDC time relations from in-beam data analysis (\rightarrow G. Perez)
- Drift times from inverse isochrone relation $r(t) \rightarrow t(r)$
 - Smearing from isochrone resolution (r-dependent)
- TDC TE-times from time-over-threshold relation
 - ToT/dx from data p/Mc relation, TE-times are dE/dx dependent
 - Extract TE-time from LE-time + ToT, and dx from radial track distance

STT Hits & Tracking Steps

Without T0

- Pattern / tracklet recognition without T0 and isochrones
- Exploit STT close-packed cell geometry ("continuous tracking")
- Triplet hits give additional track information:
 - Each straw hit has (≥) 2 neighbour straw hits
 - Center points ("triplets") from three neighbour hits (black points)
 - $(x, y)_{triplet} = \frac{1}{3} \sum_{i=1}^{3} (x_i, y_i)$ and require time difference < tmax^{min}
 - Gives many points around track with ~ mm resolution
 - Gives also (x,y) points in stereo-layer zone !
- Sufficient for 1st tracking step w/o isochrones (black line)
- Compare with generated isochrone hits (red circle) and fit (red line)

STT Hits & Tracking Steps

T0 - Extraction

- Procedure for T0 determination
 - Step 1: hit to track association using raw hits
 - Channel cluster (neighbour hits)
 - Time cumulation
 - Step 2: Simple T0 calculation from sum of track hits (no fit!)
 - $\Sigma r(t) / N_{hits} \sim 2.5 mm$ (= avg. isochrone radius)
 - Use simplified $r(t) \sim P_0 + P_1 \times (t_{TDC} t_0)$
 - Extract t₀
 - $\sigma(t_0) \sim 7ns$ for in-beam data, ~ few ns t_0 shift to real
 - Step 3: iterative re-adjusting T0
 - trackfit with isochrones

Entries

