

© R. Limbach, FZ Jülich

STT STATUS

PETER WINTZ (IKP, FZ JÜLICH)

Outline

- PANDA-STT
 - Status
 - Calibration
- PANDA/HADES-STS1 (Phase 0)
 - Status
 - Timelines

PANDA-STT Status

News & Activities

- News
 - In-kind contract with Krakow concluded, contact person: Marek Idzik (AGH Krakow)
 - Budget available for STT & FT readout
 - Important: not all work items for STT covered in contract (FE-cooling, HV coupling boards, ..)
- Activities
 - Phase 0 Straw Station STS1 for HADES upgrade
 - Synergies for PANDA-STT
 - Front-end electronics (PASTTREC FE-boards), TRB readout & DAQ
 - Straw system tests under experiment conditions, event tracking and PID ..
 - Differences: experiment HW trigger and lower DAQ rates at HADES

• Critical remark: running short of electronic components for phase 0 in-parallel testing

PANDA-STT Status

Current Developments

- Synergies with HADES
 - New chip housing at FEB under investigation (with HADES-MDC group)
 - Next generation TRB with better FPGA, higher BW datalinks
 - Integrated ASIC-TRB architecture (for HADES-MDC)
- PANDA-STT calibration \rightarrow Gabriela P.
 - Data analysis from in-beam test campaign in 2018
 - Methods and calibration steps
- STT aspects for simulation and tracking

STS1 System Overview

panda <u>HADES</u>

Reminder: PANDA-FT3/4 Layout & Dimensions

- 4 Straw double-layers
 - Orientation: $\phi = 90^{\circ}, 0^{\circ}, 0^{\circ}, 90^{\circ}$
 - Z-distances: 118.6 mm, 281.4 mm, 118.6 mm (d-layer middle z posi.)
 - 20 modules w/ 16 straws each
 - Beamhole by split straws (2x8 straws per d-layer)
- Straw specs
 - 27µm Al-mylar film, \varnothing_{ID} =10.00 mm, 766mm length
 - Straw pitch: 10.14mm, z-pitch in d-layer: 8.78 mm
 - Ar/CO2 at 2 bar (abs.)
- Module perp alignment by Rohacell/CF bars (2x0.3 mm CF tapes)
- Electronics:
 - 704 readout channels, 44x FEBv3, 88x PASTTRECv1
 - 4x TRB3, 1x RO crate

STS1 Station

STS1 Status

panda <u>HAD</u>

Straw Modules & Mechanics

- Straw modules mounted in mech. frame
 - 3 d-layers gas tight since Dec., ~ 2 mbar/h* (= permeation thru Mylar)
 - 1 d-layer with leak, repaired last week, now at ~ 1 mbar/h**

*Incl. 2x50 m piping ** only straw d-layer

- Very limited space in ECAL frame (~ few mm to blue profiles)
 - But FT3/4 dimensions were requested
 - Challenging designs and optimisations were necessary
 - All cable-routing downstream from STS1
- Frame test mounting in HADES done (Oct. 2019)
- Protection shields (moveable) in ECAL frame installed (Jan 2020)
- Transport carrier frame produced (w/ damping) (Feb 2020)
- Designs & install by Artur D. & Michael H. (IKP@FZJ)

STS1 Status

⁹⁰Sr

DAQ & System Tests in Julich

- TRB3-DAQ set up and running in Julich (Pawel Kulessa)
 - TRB3 new firmware installed, multi-board DAQ w/ time synchro
 - TDC calibration, ASIC control, aso ongoing...
 - Started from scratch

Count rates per 10s: HV off, gain1, thresh 0mV, BL=0 (middle)

- Data taking started (90Sr, later cosmics)
 - One complete d-layer readout by DAQ
 - Clean drift time spectra (raw data, 1st tests, gas gain < 1x10⁴!)
- FEBv3 tests & BL tune started
 - Noise level seems very low
 - Cabling designs seem ok

⁵⁵Fe signals (analog out, FEBv1), NL ~ 2 mV

STS1 Timelines & Scheme

Installation at HADES

- STS1 system pre-tests completion in Julich
 - Full system test (ASIC settings, straw positioning, DAQ)
- Transport to GSI
- System set up and functional tests in HADES
- HADES test beam time:
 - accelerator engineering run
 - Expect only hours of beam for us during nights

End of April

Beginning of May

June, 3rd – 7th

