UPDATE ON STT TESTBEAM DATA ANALYSIS

10.03.2010 I GABRIELA PEREZ ANDRADE PANDA COLLABORATION MEETING

OUTLINE

- TESTBEAMS AT COSY
- STT Self-calibration method
- Global calibration
- Efficiency studies (method)
- Summary

TESTBEAMS AT COSY

- Setups with approximately 6 straw layers
- ~ 24 straws per layer:
 - Particle tracks with > 24 hits simmilar to PANDA STT case
- Proton and Deuteron beams
- Momentum range: 0.5 3.0 GeV/c
- Ar/CO2 gas mixture
- Raw data:
 - Time information (t_{LE}, t_{TE})
 - Signal pulse width $(t_{TE}$ - $t_{LE})$
 - Channel ID (i_{chann} , i_{straw} , i_{layer})

Figure. One of the two straw test systems.

Figure. Straw signals (inbeam)

Figure. Electrons drift from particles path through the straw

i. Isochrone curve $r(t_i)$ parametrization, relating the electron drift time t_i and its traveled distance to the wire:

$$\frac{N_{Total}}{R} = \frac{\sum_{t_{min}}^{t_i} N_i}{r(t_i)} \rightarrow r(t_i) = \sum_{i=0}^{4} P_i \times t_i$$

- ii. Determination of straws center position.
- iii. Tracking and systematic error correction.

Figure. Electrons drift from particles path through the straw

Mitglied der Helmholtz-Gemeinschaft

Seite 4

Drift time (ns)

i. Isochrone curve $r(t_i)$ parametrization, relating the electron drift time t_i and its traveled distance to the wire:

$$\frac{N_{Total}}{R} = \frac{\sum_{t_{min}}^{t_i} N_i}{r(t_i)} \rightarrow r(t_i) = \sum_{i=0}^{4} P_i \times t_i$$

- ii. Determination of straws center position:
 - i. With channel ID information (i_{straw}, i_{layer}) the straw centers can be determined.

Input: Distance between layers

iii. Tracking and systematic error correction

Mitglied der Helmholtz-Gemeinschaft

i. Isochrone curve $r(t_i)$ parametrization, relating the electron drift time t_i and its traveled distance to the wire:

$$\frac{N_{Total}}{R} = \frac{\sum_{t_{min}}^{t_i} N_i}{r(t_i)} \rightarrow r(t_i) = \sum_{i=0}^{4} P_i \times t_i$$

- ii. Determination of straws center position:
 - i. With channel ID information (i_{straw}, i_{layer}) the straw centers can be determined.
- iii. Tracking and systematic error correction (due to *e.g.* gravitational sag).

A track crossing **below** the **straw center** is registered with a **shorter drift time** and therefore $r(t_i)$ yields a **smaller isochrone radius**

iii. Tracking and systematic error correction:

- Pre-fit line using positions of fired straws.
- ii. $r(t_i)$ calculation for each hit.
- iii. Track residuals definition: $r_{res} = |r_{track}| r_{iso}$
- iv. Best line fit through residuals minimization:

$$\frac{\chi^2}{\text{ndf}} = \left(\frac{1}{n_{\text{hits}} - 2}\right) \sum_{n=1}^{n_{\text{hits}}} \frac{r_{\text{res}}^2}{\sigma_{\text{iso}}^2(r)}$$

- i. Single outliers rejection:
 - i. If $|r_{track}| > 900 \mu m$
 - ii. If distance $|r_{track}| > 2.5 \times \sigma_{iso}(r)$
 - iii. Maximum number of outliers < 8
- ii. Spatial resolution defined as the width of residuals distribution σ_{res} .

- vii. Systematic error determined by residuals distribution mean μ_{res}
- viii. Correction by shifting the isochrones parametrization:

$$r_{new} = r(t_i) + \mu_{res}$$

- i. Re-fit using new isochrones r_{new}
- ii. Iterative process until residual distribution shift is negligible, i.e. $\mu_{res} \sim 0$

- Systematic error determined by residuals distribution mean μ_{res}
- viii. Correction by shifting the isochrones parametrization:

$$r_{new} = r(t_i) + \mu_{res}$$

- Re-fit using new isochrones \mathbf{r}_{new}
- Iterative process until residual distribution shift is negligible, i.e. $\mu_{res} \sim 0$ ii.

Mitglied der Helmholtz-Gemeinschaft

Seite 8

stabilizes

☐ At ~ 6 iterations, the resolution value

Final resolution in general is $\sigma_{r\varphi}$ < 130 µm (PANDA design goal of $\sigma_{r\varphi}$ = 150 µm)

METHOD REMARKS

- The self-calibration processing time depends on the iterations that each dataset requires to reach the optimal resolution.
- At PANDA, the particle momenta will be available only after the tracking *i.e.* the method should be dE/dx independent.
- The isochrone parametrization and systematic error correction should be performed only once.
- The ongoing work focuses on testing if the use of a common global calibration is possible for all datasets taken with the same experimental set up.
- The global calibration method has been tested in a group of proton and deuteron datasets (3 each) at different beam momenta.

GLOBAL CALIBRATION

The *global* dataset is chosen based on uniform illumination.

- i. Global dataset self-calibration is performed with necessary iterations to reach the optimal value, obtaining as output:
 - Isochrone parametrization
 - r_{mean up/down} correction
- ii. Output parameters from self-calibration are used as input for other datasets of same particle specie, without further iterations.
- iii. TASK: To compare hit resolution and residual shift correction.

SELF- CALIBRATION AND GLOBAL CALIBRATION COMPARISON Spatial resolution

Difference between the results obtained from both methods is < 5µm, showing that a good resolution is achieved using a *common global calibration*.

SELF- CALIBRATION AND GLOBAL CALIBRATION COMPARISON

Systematic error correction

- A proton dataset calibrated using both methods.
- Approx. 9 straws per layer with uniform illumination are chosen.
- The mean residual obtained after the global and self-calibration (last iteration)

$$\begin{array}{ll} \mu_{self-below} = -2 \; \mu m & \mu_{global-below} = -31 \mu m \\ \mu_{self-above} = 1 \mu m & \mu_{global-above} = -28 \mu m \end{array}$$

- Difference between mean values < 30 μm</p>
 - Contribution to overall error is of $\sim 4 \mu m$ (negligible)
- ☐ The results from tracks crossing above and below the center are in agreement.

STRAW HIT EFFICIENCY

- All fitted tracks should cross within a certain distance from the straw center (~ R_{straw}).
- The straw hit efficiency of the i_{th} straw is defined as:

$$\epsilon_{\mathrm{hit}_i} = \frac{\mathrm{Crossing\ track\ with\ r_{track}} < \mathrm{distance\ cut}}{\mathrm{Total\ number\ of\ crossing\ tracks}}$$

- All the tracks which fulfill the distance requirement are counted:
 - Different distance cuts to be tested
- The normalization is given by the total number of tracks registered in such straw i.e. a recorded drift time

STRAW RADIAL EFFICIENCY

The straw radial efficiency is given by:

$$\epsilon_{radial} = \frac{\text{Crossing track with r}_{\text{res}} < \text{residual cut}}{\text{Total number of crossing tracks}}$$

 Look at the residual values of the tracks reconstructed along the radius.

SUMMARY

- With the self-calibration method, resolution values of $\sigma_{r\varphi}$ < 130 µm is achieved (PANDA design goal is $\sigma_{r\varphi}$ < 150 µm) .
- The self-calibration processing time depends on the iterations that each dataset requires to reach the optimal resolution.
- To optimize the method, a global calibration method has been tested in a group of proton and deuteron datasets at different beam momenta.
- The difference between the achieved spatial resolutions with the self and global calibration methods is < 5 μm.
- The mean residuals (μ_{res}) deviation is successfully corrected with global calibration and the μ_{res} values only differ by < 30 μ m between methods.
- The straw efficiency is currently under investigation.

THANK YOU!

GLOBAL CALIBRATION

- A *global* dataset is chosen based on uniform illumination.
- Parameters from calibration and giving optimal hit resolution are obtained, i.e.
 - Isochrone parametrization
 - $r_{mean up/down}$ correction
- Output parameters from calibration and tracking are used as input for other datasets of same particle specie.
- Compare hit resolution and residual shift correction.

