

I. The HIP Alignment

II. A Linear Fit

July 15th 2010 | T. Randriamalala, J. Ritman, T. Stockmanns, H. Xu and

Outline

- I. The HIP Alignment
- II. A Linear Fit
- III. Outlook

The HIP alignment

The "Hits and Impact Points (HIP) Alignment" is a track based alignment method.

It is consisting on finding the correct transformation by minimizing of the hit residuals $q_{m}(u_{m},v_{m},0)$ of the measured point and $q_{x}(u_{x},v_{x},0)$ of the track impact point in *LCS* (ŵ, the 3rd component unit vector, is perpendicular to the detector plane).

$$\chi^{2} = \sum_{j}^{Ntrack} \varepsilon_{j}^{T} V_{j}^{-1} \varepsilon_{j} \qquad \varepsilon = \begin{pmatrix} \varepsilon_{u} \\ \varepsilon_{v} \end{pmatrix} = \begin{pmatrix} u_{x} - u_{m} \\ v_{x} - v_{m} \end{pmatrix}$$

$$\varepsilon = \begin{pmatrix} \varepsilon_u \\ \varepsilon_v \end{pmatrix} = \begin{pmatrix} u_x - u_m \\ v_x - v_m \end{pmatrix}$$

 γ_j is the sum of measured and impact point positions covariance matrices of track j.

Basic Formalism

The correct total transformation from the GCS to the LCS:

$$q = \Delta RR (r - r_0) - \Delta q$$

where: q(u,v,w): point coordinates in LCS,

r(x,y,z): point coordinates in GCS,

 $r_0(x_0,y_0,z_0)$: origin coordinates of LCS in GCS,

 $R=R_{\alpha}R_{\beta}R_{\gamma}$: (ideal) rotation matrix,

 $\Delta R = R_{\Delta\alpha} R_{\Delta\beta} R_{\Delta\gamma}$:corrective rotation matrix,

 $\Delta q = \Delta RR\Delta r = (\Delta u, \Delta v, \Delta w)$:corrective translation.

With the approximation that the total corrective is small:

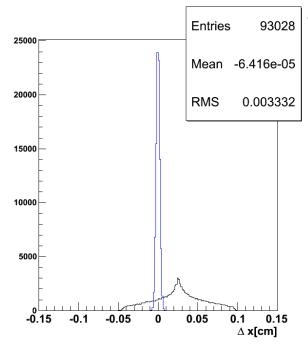
$$\varepsilon_{u} = u_{x} - \Delta u + (\Delta \gamma + \Delta \alpha) v_{x} + (\Delta w + \Delta \beta v_{x}) \tan \psi - u_{m}$$

$$\varepsilon_{v} = v_{x} - \Delta v - (\Delta \gamma + \Delta \alpha) u_{x} + (\Delta w + \Delta \beta v_{x}) \tan \theta - v_{m}$$

where: θ is the angle between uw-plane and the track ψ is the angle between vw-plane and the track

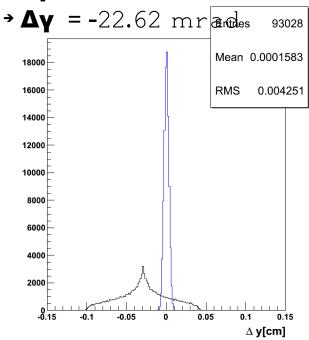
 $p = (\Delta u, \Delta v, \Delta w, \Delta \alpha, \Delta \beta, \Delta \gamma)$ is the alignment parameter.

Simulation and results


Geometry: 4 layers of Silicon Strip Sensors parallel to xy-plane and have axis the z-axis

Introduce misalignment at the 4th layer

- → x-shift: -0.0284 cm
- → y-shift: 0.0279 cm
- $\rightarrow \phi = 50 \text{ mrad}$
- $\rightarrow \theta = 20 \text{ mrad}$
- $\rightarrow \psi = 25 \text{ mrad}$


Residuals

black: before alignment blue: after alignment

After alignment process

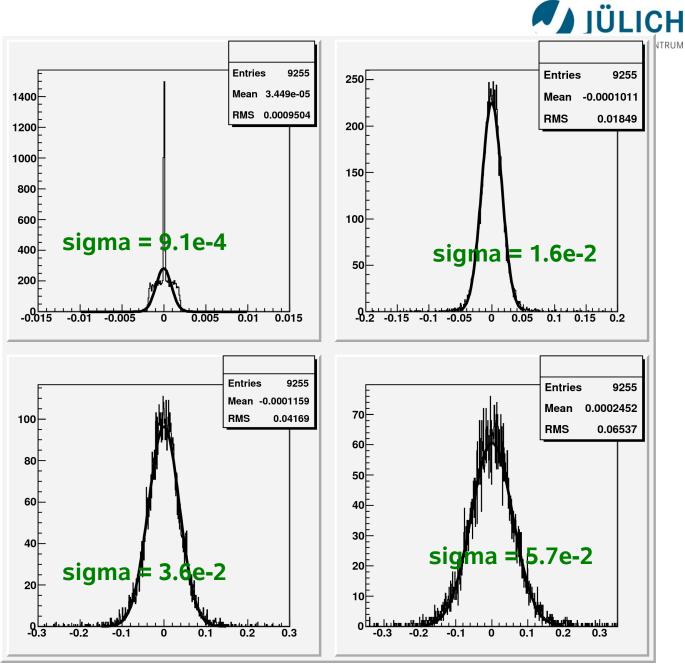
- → **∆u** = 0.0277 cm
- $\rightarrow \Delta v = -0.0274 \text{ cm}$
- → $\Delta \alpha$ = -49.99 mrad

Remarks

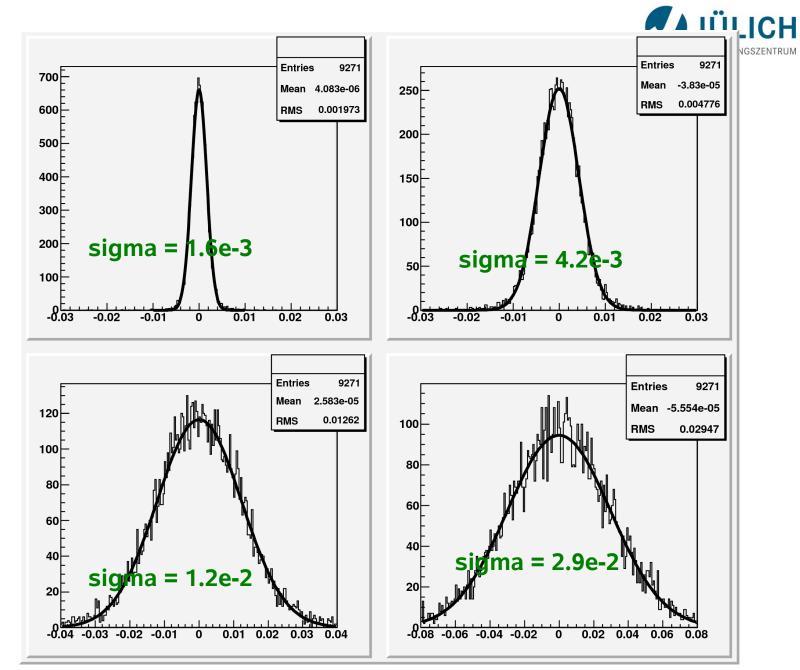
This simulation has been done for 1000 GeV/c proton tracks: small scattering effect

$$V_{j} = V = \begin{pmatrix} \sigma_{x}^{2} + \sigma_{m}^{2} & 0 \\ 0 & \sigma_{x}^{2} + \sigma_{m}^{2} \end{pmatrix} = \begin{pmatrix} \sigma_{m}^{2} & 0 \\ 0 & \sigma_{m}^{2} \end{pmatrix}$$

$$\sigma_{m} = pitch/\sqrt{12}$$


Hits lie in a straight line and the track impact positions are well measured.

For relative lower beam momenta, multiple scattering becomes stronger.


Linear Fit

@ 2.95 GeV/c

MC true – RecoHit

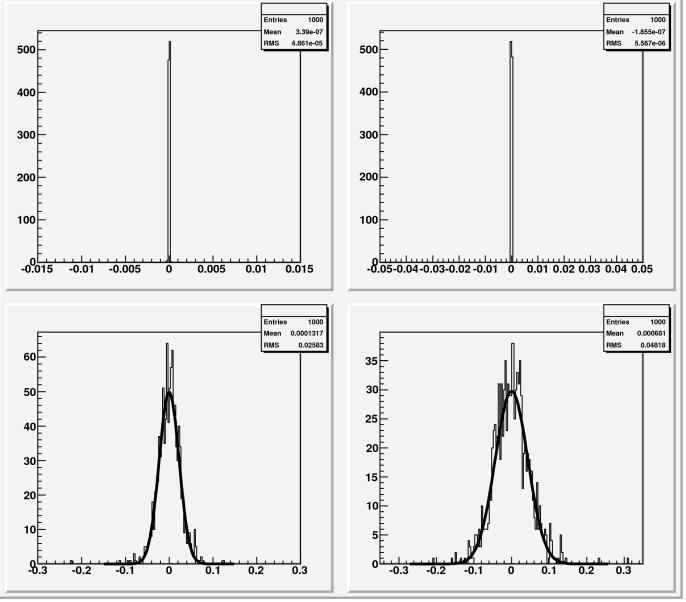
Result from the existing linear track fitter

Linear fit by minimizing:

$$\chi^2 = \sum_{j}^{NHit} \delta_j^T V_j^{-1} \delta_j$$

$$\begin{split} \delta_j &= (\delta x_j, \delta y_j) \\ \delta x &= x_{reco} - (x_0 - a_x z) \text{ , } \delta y = y_{reco} - (y_0 - b_x z) \end{split}$$

V_i is 8x8 covariance matrix


 x_0 , y_0 , a and b are the output parameter from the minimization Covariance matrix involves correlation coefficients determination

Correlation Coefficients between residuals at each plane

Outlook

More investigation on the correlation coefficient

Get the alignment works for more than 2 planes adjustment.