F"anda

Status of Vertex and Kinematic fitting for Panda

Vishwajeet Jha
(For the Panda Collaboration)

Panda Meeting : June 2010

Outline:

> Introduction
> Vertex and kinematic Fitting with constraints
> Tests of Vertex \& kinematic fitters
> Steps towards decay tree fitting
> Summary \& Outlook

Introduction:

$>$ Vertex Fitting: To find the vertex position compatible with reconstructed tracks, Also its errors with fit probability
> Kinematic Fitting : Kinematic relation between particles imposed, fit probability to make cuts
> Improved track parameters for the daughter particles and new covariance matrix
> Track parameter of virtual particles and its covariance matrix

Vertex and Kinematic Fitting Methods:

Solution can be obtained by using the least square minimization (LSM)

$$
\chi^{2}=\left(\alpha-\alpha_{0}\right)^{T} V_{\alpha 0}^{-1}\left(\alpha-\alpha_{0}\right)
$$

α_{0} Track parameters from track fit, $V_{\alpha 0}$ Covariance Matrix from track fit
α New parameters, Iterations are needed to converge to the real solution

Methods :
i) Lagrange multiplier method
ii) Kalman Filter technique

Vertex and kinematic Fitting method:

Constraint equations are applied for Vertex and kinematic fitting .

The constraint equation $H(\alpha)=0$ is linearized around suitable point $\left(\alpha_{a}, x_{a}\right)$

$$
\begin{array}{r}
\chi^{2}=\left(\alpha-\alpha_{0}\right)^{T} V_{\alpha 0}^{-1}\left(\alpha-\alpha_{0}\right)+\lambda\left(D\left(\alpha-\alpha_{a}\right)+E\left(x-x_{a}\right)+d\right) \\
D \text { is derivative w.r.t } \alpha, \\
E \text { is derivative w.r.t } x \\
\\
d \text { is the value, } H\left(\alpha_{a}, x_{a}\right)
\end{array}
$$

Minimize χ^{2} with respect to α, x and λ

Vertex Fitting Outputs :

New Track parameters: $\quad \alpha=\alpha_{0}-V_{a 0} D^{T} \lambda$
New Covariance Matrix : $V_{\alpha}=V_{\alpha 0}-V_{\alpha 0} D^{T} V_{D} D V_{\alpha 0}+V_{\alpha 0} D^{T} V_{D} E V_{x} E^{T} V_{D} D V_{\alpha 0}$
New Vertex Position : $x=x_{0}-V_{x 0} E^{\dagger} \lambda$
Track parameters for the vertexed particle : $x_{V}=x ; p_{V}=\boldsymbol{A} \alpha+\boldsymbol{B} x$
Vertex Covariance matrix : $V_{x} \& \operatorname{cov}(\alpha, x)=-V_{\alpha 0} D^{T} V_{D} E V_{x}$
Covariance Matrix for the vertexed particle :

Constrained Vertex Fitting :

Vertex Constraint: Tracks pass through an unknown point,
For a solenoid field (along z direction) this leads to two equations

$$
\begin{array}{r}
p_{x i} \Delta y_{i}-p_{y i} \Delta x_{i}-\left(a_{i} / 2\right)\left(\Delta x_{i}^{2}+\Delta y_{i}^{2}\right)=0 \\
\Delta z_{i}-\left(p_{z i} / a_{i}\right) \sin ^{-1}\left[a_{i}\left(p_{x i} \Delta x_{i}+p_{y i} \Delta y_{i}\right) / p_{T_{i}}^{2}\right]=0
\end{array}
$$

A good start point is needed specially for displaced vertices.
Start point : Vertex finder, (crossing point, point of minimum distance)
Propagation of the track parameters and covariance matrix to the start point

Pointing Constraint : Reconstructed vertex points to another known vertex (e.g. primary vertex)

D_{s} Reconstruction and Vertex Fitting:

$$
\overline{\mathrm{p}} \mathrm{p} \rightarrow \mathrm{Ds}^{ \pm} \mathrm{Ds}^{\mp} ; \mathrm{Ds} \rightarrow K^{+} K^{-} \pi
$$

Fitted D_{s} proper Lifetime $=152 \mu \mathrm{~m}$, PDG Value $=147 \mu \mathrm{~m}$

Quality of the fit:

Kinematic Fitting with Constraints:

One or more constraints can be used in combination (PndKinFitter) :

Kinematic constraints:
i) 4 vector constraint : (Add4MomConstraint (TLorentzvector Iv)
ii) momentum constraint (AddMomConstraint (Tvector3 v)
iii) Total energy /Momentum (AddTotEConstraint (double E)
iv) Mass constraint (AddMassConstraint double mass)

Possibility to include them in combination : (Global Fitting)

Kinematic 4 Momentum Fitting:

$$
\text { ppbar -> J/ } \Psi \Pi^{+} \Pi^{-} \quad 4 \text { Momentum fit for the ppbar system }
$$

$\sigma=0.059 \mathrm{GeV} / \mathrm{c}^{2}$

$\sigma=0.013 \mathrm{GeV} / \mathrm{c}^{2}$

Kinematic Fitting :

Total Energy Constraint

J/psi cands total-energy fit

$\sigma=0.021 \mathrm{GeV} / \mathrm{c}^{2}$

3-momentum Constraint

J/psi cands 3-mom fit

$\sigma=0.026 \mathrm{GeV} / \mathrm{c}^{2}$

Kinematic Fitting Mass Constraint :

Fitting the complete Decay tree:

Four class of particles (objects) :
i) Reconstructed Track as hypothesis
ii) Reconstructed as cluster
iii) Composites or virtual particles:

a) prompt decay (resonances)
b) Macroscopic decay length (composites)
iv) Missing particles

Fitting the decay tree:

Sequential : Constraints applied sequentially to build the decay chain
The bottom up approach ,
Generating new composite particles/resonances along the way
Composite has all the information of daughter tracks in linear approx

Global: All constraints are applied simultaneously for complete tree
Better treatment of non-linearities and track-track correlation
Large Matrices to be inverted
Progressive fit based on Kalman filter can be used.

Sequential Fitting I:

Constraints applied sequentially to build the decay chain $1^{\text {st }}$ step pbar -> J $/ \Psi \Pi^{+} \Pi^{-}$

4 Momentum fit for the ppbar system :

Sequential Fitting II :

$2^{\text {nd }}$ Step : Probability of the Vertex fit for the pbar p vertex after the 4-momentum fit :

Summary :
Vertex Fitters have been implemented

Kinematic fitters with many constraints have been included.

Tests of their performance have been made.

Outlook :

Detailed tests of the fitters needs to be done (Questions of efficiencies and reliability of covariance matrices)

Tests of the full decay tree fitting

