

Status of Vertex and Kinematic fitting for Panda

Vishwajeet Jha (For the Panda Collaboration)

Panda Meeting : June 2010

Outline:

Introduction

- Vertex and kinematic Fitting with constraints
- > Tests of Vertex & kinematic fitters
- Steps towards decay tree fitting
- Summary & Outlook

Introduction:

> Vertex Fitting: To find the vertex position compatible with reconstructed tracks, Also its errors with fit probability

Kinematic Fitting : Kinematic relation between particles imposed,
 fit probability to make cuts

Improved track parameters for the daughter particles and new covariance matrix

> Track parameter of virtual particles and its covariance matrix

Vertex and Kinematic Fitting Methods:

Solution can be obtained by using the least square minimization (LSM)

$$\chi^2 = (\alpha - \alpha_0)^T V_{\alpha 0}^{-1} (\alpha - \alpha_0)$$

 α_0 Track parameters from track fit, V_{a0} Covariance Matrix from track fit

 α New parameters, Iterations are needed to converge to the real solution

Methods :

- i) Lagrange multiplier method
- ii) Kalman Filter technique

Vertex and kinematic Fitting method :

Constraint equations are applied for Vertex and kinematic fitting .

The constraint equation $H(\alpha) = 0$ is linearized around suitable point (α_a, x_a)

 $\chi^2 = (\alpha - \alpha_0)^T V_{\alpha 0}^{-1} (\alpha - \alpha_0) + \lambda (D(\alpha - \alpha_a) + E(x - x_a) + d)$

D is derivative w.r.t α ,

E is derivative w.r.t x,

d is the value, $H(\alpha_a, x_a)$

Minimize χ^2 with respect to α , *x* and λ

Vertex Fitting Outputs :

New Track parameters : $\alpha = \alpha_0 - V_{\alpha 0} D^T \lambda$

New Covariance Matrix : $V_{\alpha} = V_{\alpha 0} - V_{\alpha 0}D^T V_D D V_{\alpha 0} + V_{\alpha 0}D^T V_D E V_x E^T V_D D V_{\alpha 0}$ New Vertex Position : $x = x_0 - V_{x0}E^t\lambda$

Track parameters for the vertexed particle : $x_V = x$; $p_V = A \alpha + B x$

Vertex Covariance matrix : $V_x \& cov(\alpha, x) = -V_{\alpha 0} D^T V_D E V_x$

Covariance Matrix for the vertexed particle :

Based on notes by Paul Avery

Constrained Vertex Fitting :

Vertex Constraint : Tracks pass through an unknown point, For a solenoid field (along z direction) this leads to two equations $p_{xi}\Delta y_i - p_{yi}\Delta x_i - (a_i/2)(\Delta x_i^2 + \Delta y_i^2) = 0$

 $\Delta z_{i} - (p_{zi}/a_{i}) \sin^{-1} [a_{i} (p_{xi}\Delta x_{i} + p_{yi}\Delta y_{i})/p_{Ti}^{2}] = 0$

A good start point is needed specially for displaced vertices. Start point : Vertex finder, (crossing point , point of minimum distance) Propagation of the track parameters and covariance matrix to the start point

Pointing Constraint : Reconstructed vertex points to another known vertex (e.g. primary vertex)

D_s Reconstruction and Vertex Fitting:

 $\overline{p} p \rightarrow Ds^{\pm} Ds^{\mp}; Ds \rightarrow K^{+}K^{-}\pi$

Fitted D_s proper Lifetime = 152 µm, PDG Value = 147 µm

Quality of the fit:

Kinematic Fitting with Constraints:

One or more constraints can be used in combination (PndKinFitter) :

Kinematic constraints:

i) 4 vector constraint : (Add4MomConstraint (TLorentzvector Iv)
ii) momentum constraint (AddMomConstraint (Tvector3 v)
iii) Total energy /Momentum (AddTotEConstraint (double E)
iv) Mass constraint (AddMassConstraint double mass)

Possibility to include them in combination : (Global Fitting)

Kinematic 4 Momentum Fitting:

ppbar -> J/ $\psi \Pi^+\Pi^-$ 4 Momentum fit for the ppbar system

Kinematic Fitting :

Total Energy Constraint

3-momentum Constraint

Kinematic Fitting Mass Constraint :

Fitting the complete Decay tree:

Four class of particles (objects) :

- i) Reconstructed Track as hypothesis
- ii) Reconstructed as cluster
- iii) Composites or virtual particles :
 - a) prompt decay (resonances)
 - b) Macroscopic decay length (composites)
- iv) Missing particles

Fitting the decay tree:

Sequential : Constraints applied sequentially to build the decay chain

- The bottom up approach,
- Generating new composite particles /resonances along the way
- Composite has all the information of daughter tracks in linear approx
- Global : All constraints are applied simultaneously for complete tree Better treatment of non-linearities and track-track correlation Large Matrices to be inverted
 - Progressive fit based on Kalman filter can be used.

Sequential Fitting I:

Constraints applied sequentially to build the decay chain

1st step pbar -> $J/\psi \pi^+\pi^-$

4 Momentum fit for the ppbar system :

Sequential Fitting II :

2nd Step : Probability of the Vertex fit for the pbar p vertex after the 4-momentum fit :

Summary :

Vertex Fitters have been implemented

Kinematic fitters with many constraints have been included.

Tests of their performance have been made.

Outlook :

Detailed tests of the fitters needs to be done (Questions of efficiencies and reliability of covariance matrices)

Tests of the full decay tree fitting