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I. Motivation

Questions

QCD Phase Diagram
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Issues and Questions

√

QCD at nonzero chemical potential has a sign problem and an overlap problem.
√

Can we quantify the sign problem and overlap problem, and determine it
dependence on the parameters of the phase diagram?

√

Are there regions of phase space or observables for which these problems become
manageable?

√

Will it ever be possible to access interesting physics related to the existence of a
Fermi surface by lattice QCD methods?

√

Is the sign problem a fundamental problem rather than a technical problem? ‘
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QCD Partition Function

The QCD partition at temperature 1/β and quark chemical potential µ is given by

ZQCD(µ, β) =
X

k

e−β(Ek−µNk),

where the sum is over all states with energy Ek and quark number Nk .
√

Because of charge conjugation symmetry, ZQCD(µ, β) is an even function of µ .
√

ZQCD(µ, β) is expected to have a well-defined high-temperature expansion in
powers of µ2/T 2 .

√

Interesting effects related to the formation of a Fermi-sphere cannot be obtained
from this expansion.

√

This partition function can be rewritten as a Euclidean quantum field theory

ZQCD = 〈
NfY

k

det(D +mk + µkγ0)〉YM.

Dirac

operator

quark mass

matrix

imaginary

vector potential
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Phase Diagram QCD and |QCD|

Τ

critical endpoint

〈q̄q〉 6= 0〈q̄q〉 6= 0

〈qq〉 6= 0

µ

〈q̄q〉 = 0

µ = mN/3

Schematic QCD phase diagram.
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Phase diagram of phase quenched
QCD (de Forcrand-Stephanov-Wenger-

2007). Agrees with earlier work by Kogut
and Sinclair.

The high temperature expansion of the free energy can be obtained by a Taylor
expansion (Allton-et-al-2003, Gavai-Gupta-2003), reweighting (Fodor-Katz-2002) or from an
extrapolation from imaginary µ (Lombardo-2000, de Forcrand-Philipsen-2002,

D’Elia-Lombardo-2002).
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Colliding Skyrmions

JV-Walhout-Wambach-Wyld-1987
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Skyrme Crystal

Klebanov-1985

Jackson-JV-1988

∼ 〈ψ̄ψ〉

Chiral symmetry restoration in a Skyrme crystal.
Jackson-JV-1988

Quarkyonic phase. McLerran-Pisarski-2007
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III. Sign Problem

Average Phase Factor

Distribution of the Phase

Phase Factor in 1d QCD
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Sign Problem for µ 6= 0

Because the Dirac operator at nonzero µ is nonhermitean, the fermion determinant is
complex

det(D + µγ0 +m) = eiθ|det(D + µγ0 +m)|.

The fundamental problem is that the average phase factor may vanish in the
thermodynamic limit, so that Monte-Carlo simulations are not possible (sign problem).

The severity of the sign problem can be measured by the ratio

〈e2iθ〉1+1∗ ≡ 〈det2(D +m+ µγ0)〉
〈| det(D +m+ µγ0)|2〉 ∼ e

−V (FNf =2−Fpq)
.

full QCD
partition function

phase quenched
partition function

The phase quenched QCD partition function can be written as

Z|QCD| = 〈| det(D +m+ µγ0)|2〉 = 〈det(D +m+ µγ0) det(D +m− µγ0)〉.

Because of this it can also be interpreted as QCD at isospin chemical potential µI = µ .
For low T a transition to a phase of condensed pions occurs at µ = mπ/2.

Alford-Kapustin-Wilczek-1999
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Phase Factor and Dirac Eigenvalues

det(D + m + µγ0) = eiθ| det(D + m + µγ0)|

∏
k(λk + m) phase factor

Toussaint-1990

Scatter plot of Dirac eigenvalues
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cm

Barbour et al. 1986

m < mc then 〈eiθ〉 ∼ 0
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Phase Diagram and Average Phase Factor
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The Distribution of Phase

Both within one-loop chiral perturbation theory and in one-dimensional QCD we find for
the distribution of the phase:

√

µ < mπ/2 : ρ(θ) is a periodicized Gaussian

〈ρ(θ)〉1+1 =
1√

2π∆G0
e
−

(θ−i∆G)2

∆G .

one-loop chPT integral

√

µ > mπ/2 : ρ(θ) is a periodicized Lorentzian
Lombardo-Splittorff-JV-2009
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Quenched distribution, Ejiri-2009
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III. Overlap Problem

Overlap Problem

Distribution of the Baryon Number Density
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Overlap Problem

It is possible to put the phase factor in the observable and use gauge field configurations
generated by Z|QCD| (known as reweighting).

This may introduce the overlap problem, namely that observables for the ensemble that
is generated seem to converge to the wrong value. For example this could happen when
the average is dominated by rare fluctuations.

O

<O>
1+1*

ρ(O)

<O>
1+1

σσ
O

Distribution of an operator for the phase

quenched ensemble and the full theory.

The severity of the overlap problem is
determined by the ratio

R =
|〈O〉1+1∗ − 〈O〉1+1|
σ1+1

O
+ σ1+1∗

O

.

A quantitative estimate of this ratio can
be obtained by evaluating it to one loop
chiral perturbation theory.
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The Baryon Number Density

nB =
1

V
Tr

1

γ0(D +m) + µ
.

It satisfies the charge conjugation relation

n∗
B(µ) = −nB(−µ).

Therefore nB generally has a nonzero real and imaginary part.

Re(nB) =
1

2
[nB(µ) − nB(−µ)] = lim

n→0

1

2nV

d

dµ
detn(γ0(D +m) + µ)detn(γ0(D +m) − µ),

Im(nB) =
1

2i
[nB(µ) + nB(−µ)] = lim

n→0

1

2inV

d

dµ

detn(γ0(D +m) + µ)

detn(γ0(D +m) − µ)
.

Therefore, 〈Im(nB)〉 = 〈θ〉 so that 〈Im(nB)〉1+1∗ = 0 and 〈Im(nB)〉1+1∗ = iνI

For QCD with, say with Nf = 2 , we know that at low temperatures

〈nB〉1+1 = 0 for µ < mN/3.
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Expectation values ofnB for µ < mπ/2

To one loop order in chiral perturbation theory we find

〈RenB〉1+1∗ = νI ,

〈RenB〉1+1 = νI ,

〈ImnB〉1+1∗ = 0,

〈ImnB〉1+1 = iνI .

It it possible to evaluate all moments of both the real and the imaginary parts of the
baryon density. Their distribution is a Gaussian with a width given by the sum and
difference of the isospin number and the baryon number susceptibility, respectively.

Lombardo-Splittorff-JV-2009
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Distribution of nB for µ < mπ/2

*

)Re(n

V
1

1/2~

0 ~O(V
1+1

ν o)I

1+1

B

Distribution of the real part of the baryon number density for two

dynamical fermions for full QCD (green) and phase quenched

QCD (red).

I)Im(n

1+1*

~
V
1

1/2~

0 ~O(V
1+1
iν o)

B

Distribution of the imaginary part of the baryon density.

νI =
m2

πT

π2

∞X

n=1

K2( mπn
T

)

n
sinh

2µn

T
.
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Distribution of nB for µ < mπ/2

*

)Re(n

V
1

1/2~

0 ~O(V
1+1

ν o)I

1+1

B

Distribution of the real part of the baryon number density for two

dynamical fermions for full QCD (green) and phase quenched

QCD (red).
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B

Distribution of the imaginary part of the baryon density.

νI =
m2

πT

π2

∞X

n=1

K2( mπn
T

)

n
sinh

2µn

T
.

〈nB〉1+1 = 〈Re(nB)〉1+1 + i〈Im(nB)〉1+1 = νI + iiνI = 0.
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Distribution of nB for µ > mπ/2
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Spectrum of γ0(D +m)

For µ > mπ/2 moments of the baryon number diverge due to eigenvalues close to µ .
For the p -th moment we obtain after excluding a disc around µ with radius ǫ ,

〈|n|2p〉1+1∗ ∼ ǫ2p−4.

Therefore the distribution of |n| has a power tail ( 1/|n|5 in this case).

It becomes virtually impossible to sample the baryon number.
Lombardo-Splittorff-JV-2009
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VI. Teflon Plated Observables

Infrared Dominance of the Phase Factor

Correlations with Phase Factor
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Infrared Dominance of the Phase Factor

Both in the ǫ and p domain the mass and chemical potential dependence of QCD and
QCD like partition functions can be obtained from chiral perturbation theory.

Therefore the average phase factor in this domain is determined by chPT, or in QCD, by
the infrared part of the Dirac spectrum. Notice that the chemical potential can be gauged
to the boundary.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
mΣV

1

1.1

1.2

1.3

<
ex

p(
2i

θ(
iµ

))
>

<Φ+−>
<Φ−+>

Nf=0  8
4
  µFV

1/2
=0.159  ΣV=1039

“Phase” of the fermion determinant
for imaginary chemical potential.

Splittorff-Svetitsky-2007

Analytical continuation of average phase fac-
tor:
fi

det(D + iµ)

det(D − iµ)

fl

= 1 − 4µ̂2I0(m̂)K0(m̂).

Here, m̂ = mV Σ and µ̂2 = µ2F 2
πV . The

analytical result has been obtained in the mi-
croscopic domain
Damgaard-Splittorff-2006, Splittorff-JV 2007.
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Teflon Plated Observables

√

Observables that are not sensitive to the infrared part of the Dirac spectrum can be
measured in QCD at nonzero chemical potential.

More generally, these are observables that have no correlations with the phase factor,

〈Oe2iθ〉|QCD|
| {z }

= 〈O〉|QCD|〈e2iθ〉|QCD|
| {z }

.

Then

〈O〉QCD = 〈O〉|QCD|.

Examples:
√

Chiral condensate for µ < mπ/2 and very low temperatures.√
Baryon density for T & Tco .√
Tco(µ) Allton-et al-2002

There is no sign problem or overlap problem but do we learn anything about QCD at
nonzero chemical potential?
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Correlators in Chiral Perturbation Theory

Correlators between operator such as nq , nI , 〈ψ̄ψ〉 and the phase factor can be
calculated in chiral perturbation theory.

For example in a small chemical potential and small temperature expansion we obtain

〈Re(nB) e2iθ〉1+1∗ − 〈Re(nB)〉1+1∗〈e2iθ〉1+1∗ = 0,

〈Im(nB) e2iθ〉1+1∗ − 〈Im(nB)〉1+1∗〈e2iθ〉1+1∗

〈Im(nB)e2iθ〉1+1∗
= 1.

Lombardo-Splittorff-JV-2010
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V. Ergodicity
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Ergodicity (Self-Averaging)

√

Ergodicity: Space-Time average of an observable is equal to the ensemble average.
√

QCD at nonzero chemical potential is maximally nonergodic: space-time averaging
gives the phase quenched result.

√

Master configurations do not exist for QCD at nonzero chemical potential.
√

One way out might be to complexify the fields so that cancellations can be achieved
by spatial averaging.

√

One method that may achieve this is the complex Langevin algorithm which has its
own issues. de Forcrand-2009

Not being self-averaging is a fundamental problem for QCD at µ 6= 0 .

Notice that QCD at imaginary chemical potential is ergodic.
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VI. Spectral Representations

Dirac Spectra

Alternative to Banks-Casher Relations

QCD in 1d
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Spectral Representations

Spectral representations of the Dirac operator have been extremely useful for
nonhermitean theories.

c
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����� quark mass m

Scatter plot of Dirac eigenvalues

m

√

The critical point is when the quark
mass hits the cloud of eigenvalues.

√

For phase quenched QCD this is the
point when µ = mπ/2 .

√

For Wilson fermions this is the onset of
the Aoki phase.

√

For nonhermitean theories theories with a complex determinant, the support of the
Dirac spectrum does not depend on the complex phase of the determinant.

√

Exponential cancellations can wipe out the critical point and reveal a completely
different physical system. This is the case of QCD at nonzero baryon density.
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Chiral Condensate and Banks-Casher Formula

Chiral condensate:

Σ(m) = 〈q̄q〉 =
1

V
∂m logZ =

1

V

X

k

1

m+ λk

.

m

l

−m

Hermitian Dirac

operator

I

dsΣ(s) = il(Σ(m) − Σ(−m))

= 2πilρ(0)

Σ(m) = πρ(0).

Banks-Casher formula

Chiral condensate has a
discontinuity in m

w

−m m

l

−w

Nonhermitian

Dirac operator

I

dsΣ(s) = il(Σ(m) − Σ(−m))

= 2πiρ2(0)
m

w

Σ(m) = πρ2(0)
m

w

density of eigenvalues
in the plane

Chiral condensate goes to zero linearly in m
Critical value of the quark mass: wc = m .
In physical terms this can be written as:
µc = mπ/2.

→ QCD at Finite Density – p. 31/37



QCD in 1d
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Dirac spectrum of 1d QCD

sinh

cosh

λ

Σ(m) =

D

P

k
1

λk+m

Q

k(λk+m)
E

DQ

k(λk +m)
E

determinant with
a complex phase

Ravagli-JV-2007

Eigenvalues are equally spaced on an ellipse with a random overall phase.

In the limit of a dense spectrum, Σ(m) is discontinuous across the imaginary axis
despite the fact that there are no eigenvalues for µ 6= 0.

The chiral condensate is continuous across the ellipse where the eigenvalues are
located.
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Alternative to the Banks-Casher Relation

x=−µ µ
                                        

m

x=

Σ
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(m)

m
x=−µ x=µ

��������������������������������������

For large V and small µ the eigenvalues of the Dirac operator are located on two parallel
lines x± µ resulting in the chiral condensate

Σ(m) =

Z
dxdy

π

1

m− x− iy

(eV m + e−V m − eV (x+iy) − e−V (x+iy))δ(|x| − µ)

eV m + e−V m

| {z }

= tanh(V m).

ρ(x, y) for Nf = 1

In the thermodynamic limit (V → ∞) this results in a discontinuity across m = 0 , but
only after exponentially large cancellations. Osborn-Splittorff-JV-2005, Ravagli-JV-2008
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Chiral Condensate in 1d
The first integral (∼ δ(|x| − µ)) gives the quenched contribution

ΣQ(m) = sign(m− µ) + sign(−m+ µ).

This follows from electrostatic arguments with eigenvalues as charges. The second term
is evaluated as

Σu(m) = (θ(m+mu) − θ(m+ µ)) tanh(mn).

tanh(mn)

−µ µ

Σ

m m

Σ
Q

 u(m)
(m)

−µ µ

1
n

The chiral condensate becomes
discontinuous in the continuum
limit.

Ravagli-JV-2007, Aarts-Splittorff-2010
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Conclusions and Outlook
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VII. Conclusions and Outlook

√

The physics of QCD at finite baryon density is obscured by both
the sign problem and the overlap problem.
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chemical potential.

QCD at Finite Density – p. 36/37



VII. Conclusions and Outlook

√

The physics of QCD at finite baryon density is obscured by both
the sign problem and the overlap problem.

√

The physics of the phase quenched partition function has to be
nullified before the physics of full QCD will be revealed.

√

QCD at µ 6= 0 is not self-averaging.
√

The sign problem is a fundamental problem and substantial
progress requires a complete reformulation of QCD at nonzero
chemical potential.

√

Lattice QCD simulations are not feasible in the region of phase
space where interesting baryonic effects occur.

QCD at Finite Density – p. 36/37



VII. Conclusions and Outlook

√

The physics of QCD at finite baryon density is obscured by both
the sign problem and the overlap problem.

√

The physics of the phase quenched partition function has to be
nullified before the physics of full QCD will be revealed.

√

QCD at µ 6= 0 is not self-averaging.
√

The sign problem is a fundamental problem and substantial
progress requires a complete reformulation of QCD at nonzero
chemical potential.

√

Lattice QCD simulations are not feasible in the region of phase
space where interesting baryonic effects occur.

√

To make substantial progress we have to rethink the problem for
much simpler model systems.
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In Summary

Thanks, Jochen
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