

[Image: physics.org]

Outline

• Most of this talk: real photons of a few GeV

Photons can be soft and still penetrating

They enjoy a unique status

Cold photonsPre-eq. photonsSmall systems

Ounder-explored features

Disclaimer: Not a review talk, but a travelog ()

DIRECT PHOTONS AND HIC MODELLING

• Unlike hadrons, photons(*) are emitted throughout the entire space-time history of the HIC

DIRECT PHOTON SOURCES (real and/or virtual)

Hard direct photons. pQCD with shadowing Non-thermal

Fragmentation photons. pQCD with shadowing Non-thermal

Thermal photons "Thermal"

DIRECT PHOTON SOURCES (real and/or virtual)

Hard direct photons. pQCD with shadowing Non-thermal

Jet-photon conversions "Thermal"

EMMI-RRTF

Fragmentation photons. pQCD with shadowing Non-thermal

Jet in-medium bremsstrahlung "Thermal"

DIRECT PHOTON SOURCES (real and/or virtual)

Hard direct photons. pQCD with shadowing Non-thermal

Jet-photon conversions "Thermal"

Fragmentation photons. pQCD with shadowing Non-thermal

Jet in-medium bremsstrahlung "Thermal"

4 Charles Gale McGill

About photon fragmentation functions

$$\frac{d}{d\log\mu^2}D_i^{\gamma}(z,\mu^2) = \sum_j P_{ij}(z,\mu^2) \otimes D_j^{\gamma}(z,\mu^2)$$

The evolution kernels

$$P_{ij}(z,\mu^2) = \sum_{m,n} \left(\frac{\alpha(\mu^2)}{2\pi}\right)^m \left(\frac{\alpha_s(\mu^2)}{2\pi}\right)^n P_{ij}^{(m,n)}(z)$$

Can be written as (LO in
$$\alpha$$
)

$$\frac{d}{d \log \mu^2} D_i^{\gamma}(z, \mu^2) = k_i^{\gamma}(z, \mu^2) + \sum_j P_{ji}(z, \mu^2) \otimes D_j^{\gamma}(z, \mu^2)$$
Perturbative Non-perturbative

Little new info on photon FF over the last 25 years. Most data used to fit FF are single-inclusive photon production, in hadronic reactions dominated by direct photon production

pQCD photon calculations and uncertainties

EMMI-RRTF

pQCD photon calculations and uncertainties

Kaufmann, Mukherjee, Vogelsang, CERN Proc. 2018 Fragmentation component: $e^+e^- \rightarrow (jet \gamma)X$

EMMI-RRTF

7 Charles Gale McGill

• Info Carried by the thermal radiation

$$dR = -\frac{g^{\mu\nu}}{2\omega} \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{Z} \sum_{i} e^{-\beta K_{i}} \sum_{f} (2\pi)^{4} \delta(p_{i} - p_{f} - k)$$

$$\times \langle f | J_{\mu} | i \rangle \langle i | J_{\nu} | f \rangle$$

Thermal ensemble average of the current-current correlator

Emission rates:

$$\omega \frac{d^{3}R}{d^{3}k} = -\frac{g^{\mu\nu}}{(2\pi)^{3}} \operatorname{Im}\Pi^{R}_{\mu\nu}(\omega,k) \frac{1}{e^{\beta\omega}-1} \quad \text{(photons)} \quad \left(= \frac{i}{2(2\pi)^{3}} (\Pi^{\gamma}_{12})^{\mu}_{\mu} \right)$$
$$E_{+}E_{-}\frac{d^{6}R}{d^{3}p_{+}d^{3}p_{-}} = \frac{2e^{2}}{(2\pi)^{6}} \frac{1}{k^{4}} L^{\mu\nu} \operatorname{Im}\Pi^{R}_{\mu\nu}(\omega,k) \frac{1}{e^{\beta\omega}-1} \quad \text{(dileptons)}$$

Feinberg (76); McLerran, Toimela (85); Weldon (90); Gale, Kapusta (91)

•QGP rates have been calculated up to NLO in α_s in FTFT

Ghiglieri et al., JHEP (2013); M. Laine JHEP (2013)

... and on the lattice (dileptons)

Ding et al., PRD (2011)

•Hadronic rates

Turbide, Rapp, Gale PRC (2004) C. Gale, Landolt-Bornstein (2010) Heffernan, Hohler, Rapp PRC (2015)

Photons and fluid dynamics

The revealing power of photons in small systems

Gale, Paquet, Schenke, Shen, PRC (2022)

"Small systems" can be used to explore particle production mechanisms as a function of system size

$$\frac{dN_{\rm ch}}{d\eta} \Big|_{\rm MB}^{\rm O+O} \approx \frac{dN_{\rm ch}}{d\eta} \Big|_{70-80\%}^{\rm Pb+Pb}$$
$$\frac{dN_{\rm ch}}{d\eta} \Big|_{0-5\%}^{\rm O+O} \approx \frac{dN_{\rm ch}}{d\eta} \Big|_{50-70\%}^{\rm Pb+Pb}$$

Also useful for jet studies Huss, Kurkela, Mazeliauskas et al., PRC (2021), PRL (2021)

Hadronic observables & system size

At equivalent multiplicities: $dN_{\rm ch}/d\eta \mid_{0-5\%}^{\rm O+O} \approx dN_{\rm ch}/d\eta \mid_{50-70\%}^{\rm Pb+Pb}$

Smaller systems have a higher T; difficult to assess with hadronic observables

Gale, Paquet, Schenke, Shen, PRC (2022)

For $p_T \sim$ 2 GeV, $R_{\rm OO}^{\gamma}$ is enhanced by \sim 80%

Partial conclusion(s)

- Small systems explore modelling aspects
- Photons are ideal probes

EMMI-RRTF

- Sensitive to both the modelling and to local conditions
- Nucleon-nucleon baseline is, again, very important

• "Pre-hydro" photons?

EMMI-RRTF

- Kinetic theory approach
 - BAMPS (M. Grief, PhD (2018))
 - PHSD (O. Linnyk et al., Prog. Nucl. Part. Phys. (2016))
 - J. Churchill et al., PRC (2021)
 - KøMPøST, PRC (2022)

o ...

- Field theory approach
 - M. Strickland, PLB (1994)
 - R. Baier, M. Dirks, K. Redlich, D. Schiff, PRD (1997)
 - J. Serreau, JHEP (2004)
 - S. Hauksson, S. Jeon, C. Gale, PRC (2018)

o ...

Some words about KøMPøST; An EKT approach to the pre-hydro phase

• BE is 6+1 dimensions in general

RHIC-BES

• Owing to scaling property, Green's functions can be evaluated and stored

Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney, PRL (2019); PRC 2019

 KøMPøST is conformal • KøMPøST has gluons only

Charles Gale McGill

(b)

And the ladder diagrams are summed up in a Schwinger-Dyson equation

self-energy without using the KMS condition $G_{12}(Q) = -e^{\beta Q^0} G_{21}(Q)$

S. Hauksson, PhD (2021)

RHIC-BES

Field theory approach still to be implemented A preliminary exploration of the phenomenology

Assume an anisotropic medium $f(\mathbf{p}) \sim f_{eq}(\sqrt{\mathbf{p}^2 + \xi(\mathbf{p} \cdot \mathbf{n})^2} / \Lambda)$

- Less interactions with soft gluon exchanges
- Leads to a path-dependent photon emission rate: effect on photon flow

(Much) More needs to be done

Other "pre-hydro" source: (Mini)jet-medium photons

Other "pre-hydro" source: (Mini)jet-medium photons

Jet-photon conversion at LO

- A source to consider
- Jet and hydro evolution needs to be concurrent
- Details of the parton shower are important
- And also ...

19 Charles Gale McGill

... A consistent treatment requires the medium to also be influenced by jets

- Neufeld, Müller, PRL (2019)
- Tachibana, Chang, Qin, PRC (2017)
- CoLBT Chen et al., PLB (2018)
- Tachibana QM2018
- Pablos, Singh, Gale, Jeon PRC (2022)

The presence of minijets contributes to energy & entropy $p_{\min}^J = \eta/s$

No jets	0.13
10 GeV	0.125
7 GeV	0.1

EMMI-RRTF

Not in EM calculations

20 Charles Gale McGill

Those early photon sources interpolate between pQCD photons and thermal photons

Help with the "photon flow puzzle"? Not necessarily...

The net
$$v_2^{\gamma}$$
 is a weighted average: $v_n \sim \frac{1}{N} \int \frac{dN}{d^2 p_T dy} \cos(n\phi) d\phi$

$$N = N_1 + N_2 \qquad v_n \sim \frac{1}{N} \left[\int_1 \frac{dN_1}{d^2 p_T dy} \cos\left(n\phi\right) d\phi + \int_2 \frac{dN_2}{d^2 p_T dy} \cos\left(n\phi\right) d\phi \right]$$
$$= \frac{1}{N} \left[N_1 v_n^{(1)} + N_2 v_n^{(2)} \right]$$

In general, early sources have small v_2

• How about "late photons"?...

Linnyk, Konchakovski, Steinert, Cassing, Bratkovskaya, PRC (2015)

- (Late-time)Bremsstrahlung worth more exploration
 - Current progress with SMASH
- Hadronization photons?

Young and Pratt, PRC (2016); Fuji, Itakura, Miyashi, Nonaka PRC (2022)

• Magnetic field effect?

Ayala et al., PRD (2017); Wang, Shovkovy 2307.07557

22 Charles Gale McGill

Squeezing more info out of EM radiation: Photon polarization

Assuming an anisotropic Parton distribution

Debye mass in the scattering kernel

$$f(\mathbf{p}) = \sqrt{1 + \xi} f_{iso} \left(\sqrt{\mathbf{p}^2 + \xi p_z^2} \right)$$
$$m_D^2(\phi_{\mathbf{q}}) = \left(1 - \frac{2\xi}{3} \right) m_{D_0}^2 + \xi m_{D_0}^2 \cos^2 \phi_{\mathbf{q}}$$
$$\mathscr{C}(\mathbf{q}_{\perp}) = g^2 C_F \Lambda \left(\frac{1}{q_{\perp}^2} - \frac{1}{q_{\perp}^2 + m_D^2(\phi_{\mathbf{q}})} \right)$$

23

Charles Gale

McGill

How about virtual photons?

Feinberg (76); McLerran, Toimela (85); Weldon (90); Gale, Kapusta (91)

Rewrite as:

Recall:

$$\operatorname{Im} \Pi_{\mu\nu} = \rho_{\mu\nu} = \mathbb{P}_{\mu\nu}^{\mathrm{T}} \rho_{\mathrm{T}} + \mathbb{P}_{\mu\nu}^{\mathrm{L}} \rho_{\mathrm{L}}$$
$$\frac{d\Gamma_{\ell\bar{\ell}}}{d\omega d^{3}\mathbf{k}} \sim 2\rho_{\mathrm{T}}(\omega, \mathbf{k}) + \rho_{\mathrm{L}}(\omega, \mathbf{k})$$

Some new development Dilepton production @ NLO, with $\mu_{\rm B} \neq 0$

$$m_D^2 = g^2 \left[\left(\frac{1}{2} n_f + N_c \right) \frac{T^2}{3} + n_f \frac{\mu^2}{2\pi^2} \right]$$

$$m_{\infty}^2 = g^2 \frac{C_F}{4} \left(T^2 + \frac{\mu^2}{\pi^2} \right)$$

Churchill, Du, Forster, Gale, Gao, Jackson, Jeon 2023

B. Forster 2023

EMMI-RRTF

Polarization contains lot of info that is difficult to obtain otherwise

Forster, Gale, Jackson 2023

26

McGill

Finally, a puzzle within a "puzzle"

STAR & PHENIX

Conclusion

Much recent progress in modelling
Notably for early times
Much recent progress in photon emission
e.g. @ early times

- Photons and dileptons, together, provide a more complete mapping of both the dynamics and the spectral density
- "Photon puzzle" is more obvious at RHIC
- Much work is left in theory

Some new development Dilepton production @ NLO, with $\mu_{\rm B} \neq 0$

$$m_D^2 = g^2 \left[\left(\frac{1}{2} n_f + N_c \right) \frac{T^2}{3} + n_f \frac{\mu^2}{2\pi^2} \right]$$

$$m_{\infty}^2 = g^2 \frac{C_F}{4} \left(T^2 + \frac{\mu^2}{\pi^2} \right)$$

Churchill, Du, Foster, Gale, Gao, Jackson, Jeon 2023

Braaten, Pisarski, Yuan, PRL (1990); S. M. H. Wong, Z. Phys. C (1992); G. Jackson (2022)

For rates & yields, NLO+LO effect dominate largely over that of $\mu_{\rm B} \neq 0$

