ELECTROMAGNETIC RADIATION: Perspectives

EMMI-RRTF 2023

Outline

- Most of this talk: real photons of a few GeV
- Photons can be soft and still penetrating

They enjoy a unique status

- Cold photons
oPre-eq. photons
- Small systems
- Under-explored features

Disclaimer: Not a review talk, but a travelog (o)

DIRECT PHOTONS AND HIC MODELLING

- Unlike hadrons, photons(*) are emitted throughout the entire space-time history of the HIC

"primordial" photons
"Hadronic medium photons"
"Pre-eq. photons"
(*) Real \& virtual

DIRECT PHOTON SOURCES (real and/or virtual)

Hard direct photons. pQCD with shadowing

Non-thermal

Fragmentation photons. pQCD with shadowing Non-thermal

Thermal photons

"Thermal"

DIRECT PHOTON SOURCES
 (real and/or virtual)

Jet-photon conversions
"Thermal"

DIRECT PHOTON SOURCES

(real and/or virtual)

Jet-photon conversions
"Thermal"

Jet in-medium bremsstrahlung
"Thermal"
Thermal photons
"Thermal"

- About photon fragmentation functions

$$
\frac{d}{d \log \mu^{2}} D_{i}^{\gamma}\left(z, \mu^{2}\right)=\sum_{j} P_{i j}\left(z, \mu^{2}\right) \otimes D_{j}^{\gamma}\left(z, \mu^{2}\right)
$$

The evolution kernels

$$
P_{i j}\left(z, \mu^{2}\right)=\sum_{m, n}\left(\frac{\alpha\left(\mu^{2}\right)}{2 \pi}\right)^{m}\left(\frac{\alpha_{S}\left(\mu^{2}\right)}{2 \pi}\right)^{n} P_{i j}^{(m, n)}(z)
$$

Can be written as (LO in α)

$$
\frac{d}{d \log \mu^{2}} D_{i}^{\gamma}\left(z, \mu^{2}\right)=k_{i}^{\gamma}\left(z, \mu^{2}\right)+\sum_{j} P_{j i}\left(z, \mu^{2}\right) \otimes D_{j}^{\gamma}\left(z, \mu^{2}\right)
$$

Perturbative
Non-perturbative

Little new info on photon FF over the last 25 years. Most data used to fit FF are single-inclusive photon production, in hadronic reactions dominated by direct photon production

PQCD photon calculations and uncertainties

Aurenche et al., PRD (2006)

Klasen, König, Eur. PJC (2014)
$\mathrm{pp} \rightarrow \gamma \mathrm{X}$ at $\sqrt{s}=200 \mathrm{GeV}$ with $\mid \mathrm{yl}<0.35$

$\mathrm{pp} \rightarrow \gamma \mathrm{X}$ at $\sqrt{\mathrm{s}}=200 \mathrm{GeV}$ with $\mathrm{ly\mid}<0.35$

PQCD photon calculations and uncertainties

Kaufmann, Mukherjee, Vogelsang, CERN Proc. 2018 Fragmentation component: $e^{+} e^{-} \rightarrow(j e t \gamma) X$

- Info Carried by the thermal radiation

$$
\begin{gathered}
d R=-\frac{g^{\mu v}}{2 \omega} \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{Z} \sum_{i} e^{-\beta K_{i}} \sum_{f}(2 \pi)^{4} \delta\left(p_{i}-p_{f}-k\right) \\
\times\langle f| J_{\mu}|i\rangle\langle i| J_{v}|f\rangle
\end{gathered}
$$

Thermal ensemble average of the current-current correlator

Emission rates:

$$
\begin{gathered}
\omega \frac{d^{3} R}{d^{3} k}=-\frac{g^{\mu \nu}}{(2 \pi)^{3}} \operatorname{Im} \Pi_{\mu \nu}^{R}(\omega, k) \frac{1}{e^{\beta \omega}-1} \text { (photons) } \quad\left(=\frac{i}{2(2 \pi)^{3}}\left(\Pi_{12}^{\gamma}\right)_{\mu}^{\mu}\right) \\
E_{+} E_{-} \frac{d^{6} R}{d^{3} p_{+} d^{3} p_{-}}=\frac{2 e^{2}}{(2 \pi)^{6}} \frac{1}{k^{4}} L^{\mu \nu} \operatorname{Im} \Pi_{\mu \nu}^{R}(\omega, k) \frac{1}{e^{\beta \omega}-1} \quad \text { (dileptons) }
\end{gathered}
$$

Feinberg (76); McLerran, Toimela (85); Weldon (90); Gale, Kapusta (91)

- QGP rates have been calculated up to NLO in α_{s} in FTFT

Ghiglieri et al., JHEP (2013); M. Laine JHEP (2013)
... and on the lattice (dileptons)
Ding et al., PRD (2011)

- Hadronic rates

Turbide, Rapp, Gale PRC (2004)

Photons and fluid dynamics

$$
\left.q_{0} \frac{d^{3} R}{d^{3} q}\right|_{1+2 \rightarrow 3+\gamma}=\int \frac{d^{3} p_{1}}{2(2 \pi)^{3} E_{1}} \frac{d^{3} p_{2}}{2(2 \pi)^{3} E_{2}} \frac{d^{3} p_{3}}{2(2 \pi)^{3} E_{3}}(2 \pi)^{4}|M|^{2} \delta^{4}(\ldots) \frac{f\left(E_{1}\right) f\left(E_{2}\right)\left[1 \pm f\left(E_{3}\right)\right]}{2(2 \pi)^{3}}
$$

$$
f_{0}\left(u^{\mu} p_{\mu}\right)=\frac{1}{(2 \pi)^{3}} \frac{1}{\exp \left[\left(u^{\mu} p_{\mu}-\mu\right) / T\right] \pm 1} \quad f_{0} \rightarrow f_{0}+\delta f(\pi, \zeta)
$$

Hadronic:
Baryons
Ideal I+Shear I $+\$+$ Bulk

- Paquet et al., PRC
(2016)
- Hauksson, Jeon, Gale (2017)
QGP: LPMBrem.
Hadronio:
Meson
reactions
Hadronic: Meson-Mesont bary on bren.
- Rapp et al., ANP (2000)
- Turbide et al., PRC (2004)
- Paquet et al., PRC
(2016)

Hauksson, Jeon, Gale (2017)

Paquet etal., PRC (2016)

Heffernan, Gale, Jeon, Paquet 2306.09619

- NLO rates not shown
- Work left to be done to make hydro and photon emission consistent

The revealing power of photons in small systems

Gale, Paquet, Schenke, Shen, PRC (2022)
"Small systems" can be used to explore particle production mechanisms as a function of system size

$$
\begin{aligned}
& d N_{\mathrm{ch}} /\left.d \eta\right|_{\mathrm{MB}} ^{\mathrm{O}+\mathrm{O}} \approx d N_{\mathrm{ch}} /\left.d \eta\right|_{70-80 \%} ^{\mathrm{Pb}+\mathrm{Pb}} \\
& d N_{\mathrm{ch}} /\left.d \eta\right|_{0-5 \%} ^{\mathrm{O}+\mathrm{O}} \approx d N_{\mathrm{ch}} /\left.d \eta\right|_{50-70 \%} ^{\mathrm{Pb}+\mathrm{Pb}}
\end{aligned}
$$

Also useful for jet studies Huss, Kurkela, Mazeliauskas et al., PRC (2021), PRL (2021)

Hadronic observables \& system size

Small systems have larger p_{T} at same multiplicity. Larger gradients

At a given multiplicity,
$v_{2}(\mathrm{~Pb}+\mathrm{Pb})>v_{2}(\mathrm{O}+\mathrm{O})>v_{2}(\mathrm{p}+\mathrm{Pb})$
$v_{3} \approx$ constant

At equivalent multiplicities: $d N_{\mathrm{ch}} /\left.d \eta\right|_{0-5 \%} ^{\mathrm{O}+\mathrm{O}} \approx d N_{\mathrm{ch}} /\left.d \eta\right|_{50-70 \%} ^{\mathrm{Pb}+\mathrm{Pb}}$

Smaller systems have a higher T; difficult to assess with hadronic observables

Gale, Paquet, Schenke, Shen, PRC (2022)

For $p_{T} \sim 2 \mathrm{GeV}, R_{\mathrm{OO}}^{\gamma}$ is enhanced by $\sim 80 \%$

Partial conclusion(s)

- Small systems explore modelling aspects
- Photons are ideal probes

O Sensitive to both the modelling and to local conditions

- Nucleon-nucleon baseline is, again, very important

- "Pre-hydro" photons?

- Kinetic theory approach
- BAMPS (M. Grief, PhD (2018))
- PHSD (O. Linnyk et al., Prog. Nucl. Part. Phys. (2016))
- J. Churchill et al., PRC (2021)
- KøMPøST, PRC (2022)

○ ...

- Field theory approach
- M. Strickland, PLB (1994)
- R. Baier, M. Dirks, K. Redlich, D. Schiff, PRD (1997)
- J. Serreau, JHEP (2004)
- S. Hauksson, S. Jeon, C. Gale, PRC (2018)

Some words about KøMPøST;

An EKT approach to the pre-hydro phase

$$
\partial_{\tau} f_{\mathbf{x}, \mathbf{p}}+\frac{\mathbf{p}}{|\mathbf{p}|} \cdot \nabla_{\mathbf{x}} f_{\mathbf{x}, \mathbf{p}}-\frac{p^{z}}{\tau} \partial_{p^{z}} f_{\mathbf{x}, \mathbf{p}}=\mathscr{C}\left[f_{\mathbf{x}, \mathbf{p}}\right]
$$

$$
\begin{aligned}
& T^{\mu \nu}\left(t_{E K T}, \mathbf{x}\right)=\bar{T}_{\mathrm{x}}^{\mu \nu}+\delta T_{\mathrm{x}}^{\mu \nu}\left(t_{E K T}, \mathbf{x}\right) \\
& \text { Average } T^{\mu \nu} \text { evaluated over causal circle } \\
& \bar{T}^{\mu \nu}(\tau)=\nu_{g} \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{p^{\mu} p^{\nu}}{p^{0}} \bar{f}(\tau, \mathbf{p}) \\
& \frac{\delta T^{\mu \nu}(\tau, \mathbf{x})}{\bar{T}_{\mathbf{x}}^{\tau \tau}(\tau)}=\frac{1}{\bar{T}_{\mathbf{x}}^{\tau \tau}\left(\tau_{0}\right)} \int d^{2} \mathbf{x}_{0} G_{\alpha \beta}^{\mu \nu}\left(\mathbf{x}, \mathbf{x}_{0}, \tau, \tau_{0}\right) \delta T_{\mathbf{x}}^{\alpha \beta}\left(\tau_{0}, \mathbf{x}_{0}\right)
\end{aligned}
$$

- $B E$ is $6+1$ dimensions in general
- Owing to scaling property, Green's functions can be evaluated and stored Kurkela, Mazeliauskas, Paquet, Schlichting, Teaney, PRL (2019); PRC 2019
- KøMPøST is conformal
- KøMPøST has gluons only

- Non-equilibrium field theory approach

$$
\omega \frac{d^{3} R}{d^{3} k}=-\frac{g^{\mu \nu}}{(2 \pi)^{3}} \operatorname{Im} \Pi_{\mu \nu}^{R}(\omega, k) \frac{1}{e^{\beta \omega}-1} \quad \rightarrow \quad \omega \frac{d^{3} R}{d^{3} k}=\frac{i}{2(2 \pi)^{3}}\left(\Pi_{12}\right)^{\mu}{ }_{\mu}
$$

(b)

One can derive expression for hard quark and soft gluon propagators, to leading order, and construct the self-energy without using the KMS condition $G_{12}(Q)=-e^{\beta Q^{0}} G_{21}(Q)$
S. Hauksson, PhD (2021)

Field theory approach still to be implemented A preliminary exploration of the phenomenology

Assume an anisotropic medium $\quad f(\mathbf{p}) \sim f_{\text {eq }}\left(\sqrt{\mathbf{p}^{2}+\xi(\mathbf{p} \cdot \mathbf{n})^{2}} / \Lambda\right)$

- Less interactions with soft gluon exchanges
- Leads to a path-dependent photon emission rate: effect on photon flow
(Much) More needs to be done

- Other "pre-hydro" source: (Mini) jet-medium photons

First part: jet propagation

Brick temperature: $\mathrm{T}=0.3 \mathrm{GeV}$

Other "pre-hydro" source: (Mini)jet-medium photons

Jet-photon conversion at LO
Brick temperature: $\mathrm{T}=0.3 \mathrm{GeV}$
... A consistent treatment requires the medium to also be influenced by jets

- Neufeld, Müller, PRL (2019)
- Tachibana, Chang, Qin, PRC (2017)
- CoLBT Chen et al., PLB (2018)
- Tachibana QM2018
- Pablos, Singh, Gale, Jeon PRC (2022)

Isotherms

Pablos, Singh, Gale, Jeon PRC (2022)
The presence of minijets contributes to energy \& entropy
$p_{\text {min }}^{J} \quad \eta / s$

No jets	0.13
10 GeV	0.125
7 GeV	0.1

Not in EM calculations

Those early photon sources interpolate between PQCD photons and thermal photons

Help with the "photon flow puzzle"? Not necessarily...

The net v_{2}^{γ} is a weighted average: $v_{n} \sim \frac{1}{N} \int \frac{d N}{d^{2} p_{T} d y} \cos (n \phi) d \phi$

$$
\begin{gathered}
N=N_{1}+N_{2} \quad v_{n} \sim \frac{1}{N}\left[\int_{1} \frac{d N_{1}}{d^{2} p_{T} d y} \cos (n \phi) d \phi+\int_{2} \frac{d N_{2}}{d^{2} p_{T} d y} \cos (n \phi) d \phi\right] \\
=\frac{1}{N}\left[N_{1} v_{n}^{(1)}+N_{2} v_{n}^{(2)}\right]
\end{gathered}
$$

In general, early sources have small v_{2}

- How about "late photons"?...

Linnyk, Konchakovski, Steinert, Cassing, Bratkovskaya, PRC (2015)

- (Late-time)Bremsstrahlung worth more exploration
o Current progress with SMASH
- Hadronization photons?

Young and Pratt, PRC (2016); Fuji, Itakura, Miyashi, Nonaka PRC (2022)

- Magnetic field effect?

Ayala et al., PRD (2017); Wang, Shovkovy 2307.07557

Squeezing more info out of EM radiation:

Photon polarization

Assuming an anisotropic Parton distribution
Debye mass in the scattering kernel

$$
\begin{aligned}
& f(\mathbf{p})=\sqrt{1+\xi} f_{\text {iso }}\left(\sqrt{\mathbf{p}^{2}+\xi p_{z}^{2}}\right) \\
& m_{D}^{2}\left(\phi_{\mathbf{q}}\right)=\left(1-\frac{2 \xi}{3}\right) m_{D_{0}}^{2}+\xi m_{D_{0}}^{2} \cos ^{2} \phi_{\mathbf{q}} \\
& \mathscr{C}\left(\mathbf{q}_{\perp}\right)=g^{2} C_{F} \Lambda\left(\frac{1}{q_{\perp}^{2}}-\frac{1}{q_{\perp}^{2}+m_{D}^{2}\left(\phi_{\mathbf{q}}\right)}\right)
\end{aligned}
$$

$$
r=\frac{k \frac{d \Gamma_{z}}{d^{3} k}-k \frac{d \Gamma_{y}}{d^{3} k}}{k \frac{d \Gamma_{z}}{d^{3} k}+k \frac{d \Gamma_{y}}{d^{3} k}}
$$

Polarization

$$
\begin{array}{r}
P_{L} / P_{T} \approx 0.57 \\
0.68 \\
0.81
\end{array}
$$

- Net Polariz. is a competition between bremsstrahlung and pair annihilation

How about virtual photons?

Recall:

$$
\omega \frac{d^{3} R}{d^{3} k}=-\frac{g^{\mu \nu}}{(2 \pi)^{3}} \operatorname{Im} \Pi_{\mu \nu}(\omega, \mathbf{k}) \frac{1}{e^{\beta \omega}-1}
$$

$$
E_{+} E_{-} \frac{d^{6} R}{d^{3} p_{+} d^{3} p_{-}}=\frac{2 e^{2}}{(2 \pi)^{6}} \frac{1}{k^{4}} L^{\mu \nu} \operatorname{Im} \Pi_{\mu \nu}(\omega, \mathbf{k}) \frac{1}{e^{\beta \omega}-1}
$$

Feinberg (76); McLerran, Toimela (85); Weldon (90); Gale, Kapusta (91)
Rewrite as:

$$
\begin{aligned}
\operatorname{Im} \Pi_{\mu \nu} & =\rho_{\mu \nu}=\mathbb{P}_{\mu \nu}^{\mathrm{T}} \rho_{\mathrm{T}}+\mathbb{P}_{\mu \nu}^{\mathrm{L}} \rho_{\mathrm{L}} \\
\frac{d \Gamma_{\ell \bar{\ell}}}{d \omega d^{3} \mathbf{k}} & \sim 2 \rho_{\mathrm{T}}(\omega, \mathbf{k})+\rho_{\mathrm{L}}(\omega, \mathbf{k})
\end{aligned}
$$

Some new development

Dilepton production @ NLO, with $\mu_{\mathrm{B}} \neq 0$

$$
m_{D}^{2}=g^{2}\left[\left(\frac{1}{2} n_{f}+N_{c}\right) \frac{T^{2}}{3}+n_{f} \frac{\mu^{2}}{2 \pi^{2}}\right]
$$

$$
m_{\infty}^{2}=g^{2} \frac{C_{F}}{4}\left(T^{2}+\frac{\mu^{2}}{\pi^{2}}\right)
$$

B. Forster 2023

Polarization $\lambda=\left(\rho_{T}-\rho_{L}\right) /\left(\rho_{T}+\rho_{L}\right)$
$-\mu_{B} / T=6$ $\mathrm{T}=0.4 \mathrm{GeV}$

- $\mu_{B} / T=3.5$
$\mathrm{LO}+\mathrm{NLO}\left(\alpha_{s}=0.3\right)$ \qquad $\mu_{B} / T=0$

Polarization contains lot of info that is difficult to obtain otherwise

- Finally, a puzzle within a "puzzle"
 STAR \& PHENIX

STAR Phys. Lett. (2017)

- MB: STAR 0-80\%, PHENIX 0-92\%
- Manifest tension between STAR and PHENIX photon data
- STAR yield and calculation in good agreement

Conclusion

- Much recent progress in modelling

O Notably for early times

- Much recent progress in photon emission
o e.g. @ early times

- Photons and dileptons, together, provide a more complete mapping of both the dynamics and the spectral density
- "Photon puzzle" is more obvious at RHIC
- Much work is left in theory

Some new development

Dilepton production @ NLO, with $\mu_{\mathrm{B}} \neq 0$

$$
m_{D}^{2}=g^{2}\left[\left(\frac{1}{2} n_{f}+N_{c}\right) \frac{T^{2}}{3}+n_{f} \frac{\mu^{2}}{2 \pi^{2}}\right] \quad m_{\infty}^{2}=g^{2} \frac{C_{F}}{4}\left(T^{2}+\frac{\mu^{2}}{\pi^{2}}\right)
$$

Churchill, Du, Foster, Gale, Gao, Jackson, Jeon 2023

Braaten, Pisarski, Yuan, PRL (1990); S. M. H. Wong, Z. Phys. C (1992); G. Jackson (2022)

For rates \& yields, NLO+LO effect dominate largely over that of $\mu_{\mathrm{B}} \neq 0$

