

Testing Special Relativity at the ESR

- Motivation
- Principle of time dilation tests

- The experiment techniques
- Results

Why Testing Lorentz Invariance?

Ralf Lehnert (2007)

Principle of Relativity:

The laws of physics are the same for all inertial frames. Principle of Constancy of the Speed of Light:

Any ray of light moves in the "stationary" system of coordinates with determined velocity c, whether the ray be emitted by a stationary or by a moving body.

The Relativistic Doppler Effect

Relativistic Doppler effect

The First Ives-Stilwell Experiment

Relativistic Doppler effect

The First Ives-Stilwell Experiment

Relativistic Doppler effect

Framework for interpretation

Test theories:

Framework for Interpretation

Test theories:

Modern Ives-Stilwell Experiment

Δν/ν **~ 10**⁻¹⁰

frequencies has to been known very accurate

 $\varepsilon(\beta) \sim \beta^2$

the higher the clock velocity, the higher the sensitivity

The Clock: Metastable ⁷Li⁺

The GSI Facility

The ECR Ion Source

Amount of metastable $^{7}Li^{+}$: < 0.1 ‰ N³⁺ F⁵⁺ Li^{+}/N^{2+} Li²⁺/N⁴⁺ **F**²⁺ lon current [a.u.] N⁺ **O**³⁺ **O**²⁺ Mass-to-charge ratio [u/e] 14 3.5 7

The Experimental Storage Ring ESR

The Experimental Storage Ring ESR

SpHERe

The ⁷Li⁺ Ion as an Emitter @ 34 % c

Wavelength & Intensity boost

Experimental Setup

Characteristics of the metastable ⁷Li⁺

Test of time dilation

[PR-A 80 (2009) 022107]

Limits for Hypothetical Deviations

Improvement of Metastable Production

Conclusions SRT

- ✓ one can test LI via measurement of three frequencies
- first Doppler-free spectroscopy on high relativistic particles
- ✓ on the same level as the leading experiment (10⁻⁸)
- ✓ waiting for beamtime !!

SRT: The team

D. Bing², B. Botermann¹, G. Ewald³, C. Geppert², G. Gwinner⁵, T. W. Hänsch⁴, R. Holzwarth⁴, G. Huber¹, H.-J. Kluge³, T. Kühl^{1,3}, W. Nörtershäuser^{1,3}, D. Schwalm², T. Stöhlker³, T. Udem⁴, A. Wolf²

The E083 Collaboration (LIBELLE)

Imperial College London

AM

M. Lochmann^{1,3}, D. Anielski⁴, C. Brandau³, D. Church⁵, A. Dax⁹, Ch. Geppert^{1,3}, V. Hannen⁴, G. Huber², Th. Kühl³, Ch. Novotny², R. Sánchez^{1,3}, D. Schneider⁶, V. Shabaev⁷, Th. Stöhlker^{3,10}, R. C. Thompson⁸, A. Volotka^{11,7}, Ch. Weinheimer⁴, D.F.A. Winters¹⁰, W. Nörtershäuser^{1,3}

¹Institut für Kernchemie, Johannes Gutenberg-Universität Mainz — ²Institut für Physik, Johannes Gutenberg-Universität Mainz — ³GSI Helmholtzzentrum für Schwerionenforschung GmbH — ⁴Institut für Kernphysik, Westfälische Wilhelms-Universität Münster — ⁵Department of Physics, Texas A&M University — ⁶Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) — ⁷Department of Physics, St. Petersburg State University — ⁸Department of Physics, Imperial College London — ⁹Department of Physics, University of Tokyo — ¹⁰Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg — ¹¹Institut für Theoretische Physik, TU Dresden

LIBELLE (Dragonfly)

Lithium-like Bismuth Excitation

with Laser Light at the ESR

Laser

SpHERe

Disentangling QED and nuclear structure

H-like:
$$\Delta E^{(1s)} = \Delta E^{(1s)}_{\text{Dirac}}(1 - \varepsilon^{(1s)}) + \Delta E^{(1s)}_{\text{QED}},$$

Li-like: $\Delta E^{(2s)} = \Delta E^{(2s)}_{\text{Dirac}} (1 - \varepsilon^{(2s)}) + \Delta E_{\text{int}} (1 - \varepsilon^{(\text{int})}) + \Delta E^{(2s)}_{\text{QED}} + \Delta E_{\text{int-QED}}.$

It can be shown that the ratios

$$\frac{\varepsilon^{(2s)}}{\varepsilon^{(1s)}} = f(\alpha Z)$$
 and $\frac{\varepsilon^{(int)}}{\varepsilon^{(2s)}} = f_{int}(\alpha Z)$.

can be calculated to rather high accuracy and is almost independent of the nuclear structure \Rightarrow Bohr-Weisskopf effect cancels !

Knowing the hyperfine splitting in the H-like ion, the HFS in the Li-like ion can be predicted with high accuracy!

Shabaev et al., PRL 86 3959 (2001)

ESR: Doppler-Assisted Laser Spectroscopy

Doppler Shift:

Examples:

²⁰⁹Bi⁸²⁺:
$$\lambda_0 = 250 \text{ nm}$$

 $\beta = 0.59 (218 \text{ MeV/u})$
 $\lambda_{\text{Lab}} = 489 \text{ nm}$

Hyperfine Splitting in Hydrogen-Like Pb⁸¹⁺

 $\Delta E_{HFS} = 1.2159(2) \text{ eV}$

Status for Li-Like ²⁰⁹Bi⁸²⁺

Fluorescence Detection at Relativistic Velocities

New Detection Device for ESR Spectroscopy

LaserSpHERe

Laser P

Laser A

hochgeladenen Ionen und exotischen radioaktiven Nukliden

SpecTrap

http://www.uni-mainz.de/FB/Chemie/AK-Noertershaeuser/

Funding :

HELMHOLTZ

C

HELMHOLTZ

Institut Mainz

Bundesministerium für Bildung und Forschung

ema

New Detection Device for ESR Spectroscopy

mirror moved out of ESR

Fundamental Tests

Highest precision experiments on "cold particles"

Time Dilation / Doppler Effect

<u>classical (acoustic)</u>

 $(t)^{-1} = v = \frac{v_0}{\left(1 \pm \frac{v}{c}\right)}$

emitted source frequency (at rest) : v_0

in flight direction : $v_p > v_0$

against direction : $v_a < v_0$

The ⁷Li⁺ Ion as an Emitter @ 34 % c

"Color code" of the Signal

Experiment setup (a few details)

FM-saturation Spectroscopy on I₂

[Opt. Com. 274 (2007) 354]

 $a_1\!\!:\!(388\;605\;083.71\pm0.30)\;\text{MHz}$

temperature of the cold finger 30°C

Fluorescence Detection Section

10404773400747764767767042575734240454

Laser

SpHERe

exp. relative accuracy $< 2 \times 10^{-4}$

P. Seelig et al., PRL 81 (1998) P. Seelig, PhD thesis Mainz/GSI 1999

Candidates for Spectroscopy

Approaches:

E083: Relativistic lons at the ESR

SPECTRAP @ HITRAP: Laser Spectroscopy on Trapped Ions inside a Penning Trap

Laser Spectroscopy Technique

Einstein's Postulates for SRT

Principle of Relativity:

Principle of Constancy of the Speed of Light:

The laws of physics are the same for all inertial frames. Any ray of light moves in the "stationary" system of coordinates with determined velocity c, whether the ray be emitted by a stationary or by a moving body.

Consequences of the postulates

