PRECISION SPECTROSCOPY OF FORBIDDEN TRANSITIONS: SPECTRAP @ HITRAP @ ESR

spectroscopy of HCI: M1-transitions

ions of interest

FS: medium-heavy H-, Li- and B-like ions

TRANSITION WAVELENGTH [nm]

Laser

SpHERe

HFS: heavy H- and Li-like ions

		Туре	lon	Transition	λ [nm]	A [1/s]
TRANSITION WAVELENGTH [nm]	1800 +	H-like	¹⁶⁵ Ho ⁶⁶⁺	F=3 – F=4	572.6	-
	1600-		¹⁸⁵ Re ⁷⁴⁺	F=2 – F=3	456.5	-
	1400		¹⁸⁷ Re ⁷⁴⁺	F=2 – F=3	452.2	-
			²⁰³ TI ⁸⁰⁺	F=0 - F=1	386.3	-
			²⁰⁵ TI ⁸⁰⁺	F=0 – F=1	382.6	-
	600-		²⁰⁷ Pb ⁸¹⁺	F=0 - F=1	1019.7	20
	400 - + HFS H-like		²⁰⁹ Bi ⁸²⁺	F=4 – F=5	243.9	2849
			²³⁵ U ⁹¹⁺	F=3 – F=4	1538	9
		Li-like	²⁰⁹ Bi ⁸⁰⁺	F=4 – F=5	1514	12
	NUCLEAR OTARGE NUMBER Z					

previous measurements: ESR

Laser

SpHERe

forbidden transitions so far measured

TABLE II: Measured values for the ground state hyperfine splittings in highly charged ions.

	type and reference	transition	$\lambda \; [{ m nm}]$	species
typical	EBIT $[27]$	$\rm F{=}4\rightarrow \rm F{=}3$	572.6(1.5)	$^{165}\mathrm{Ho}^{66+}$
relative	EBIT $[28]$	$\rm F{=}3\rightarrow \rm F{=}2$	456.05(3)	$^{185}\mathrm{Re}^{74+}$
uncortainty	EBIT $[28]$	$\rm F{=}3\rightarrow \rm F{=}2$	451.69(5)	$^{187}\mathrm{Re}^{74+}$
uncertainty	EBIT [29]	$F=1 \rightarrow F=0$	385.822(30)	203 Tl $^{80+}$
10-4	EBIT $[29]$	$F=1 \rightarrow F=0$	382.184(34)	$^{205}\text{Tl}^{80+}$
10 -	ESR [30]	$F=1 \rightarrow F=0$	1019.7(2)	$^{207}\text{Pb}^{81+}$
	ESR [31]	$F=1 \rightarrow F=0$	1019.5(2)	$^{207}\text{Pb}^{81+}$
	ESR [32]	$F=5 \rightarrow F=4$	243.87(4)	$^{209}\text{Bi}^{82+}$
	ESR [31]	$F=5 \rightarrow F=4$	243.87(2)	$^{209}\text{Bi}^{82+}$
	EBIT [33]	$F=5 \rightarrow F=4$	0.820(26) eV	$^{209}\text{Bi}^{80+}$
	EBIT $[34]$	$F=5 \rightarrow F=4$	$0.791(5) \mathrm{eV}$	²⁰⁹ Bi ⁸⁰⁺

... numerous g_l from NMR

TABLE I: Comparison of theoretical and experimental $g_J\mbox{-}{\rm factor}$ values.

2032(11)
$\frac{20}{26}$

10-4

10-9

g_J

going to cool ions

relative Doppler broadening of FS and HFS transitions

Laser

trap arrangement

SPECTRAP @ HITRAP

SPECTRAP Penning trap

transparent ring

SPECTRAP

status

we have:

- magnet setup with assembled (test) beamline
- experimental control electronics (LabVIEW-based)
 - trap with installed cryo-electronics almost ready
 - laser systems for Mg⁺ and Bi⁸²⁺ almost ready

we need:

- ions (offline source / EBIT / HITRAP)
- detectors (under way, Uni Münster)

next steps:

- install and wire the trap (july)
 - cool down the magnet and
 - get ions

further contributions

- Z. Andjelkovic (poster, setup)
- D. Segal (poster, trap-related)
 - R. Jöhren (talk, detectors)
- D. von Lindenfels (poster, double resonance)
 - S. Albrecht (poster, lasers)

