EMMI workshop Eisenach, June 27-30, 2010 Exploring the Age and History of our Galaxy with the ES Are nuclear cosmic "clocks" reliable? What happened at the early solar system? Fritz Bosch, GSI Helmholtzzentrum 206Pb81+ 1. The "new cosmology" 2. Stellar and nuclear cosmic clocks 3. The ¹⁸⁷Rhenium/¹⁸⁷Osmium nuclear cosmic clock and its dependence on the atomic charge state

4. The s-process nuclear clock ²⁰⁵Pb and the early solar system

The past and the fate of our Universe

Two hints on a "birth" of the Universe

→ The cosmic expansion: **Redshift** proportional to distance

→ The **3K** Cosmic Microwave Background (CMB) from decoupling of matter and radiation

Hubble Ultra Deep Field Hubble Space Telescope • Advanced Camera for Surveys

...I do'nt know, honey

Oh! It sounds strange – I think you're a physicist ??

That's true – but I had neither help nor money for looking to the secrets of the Universe...

My thanks are to the ESR accelerator crew, the Atomic Physics and (former) KPII division and to all other colleagues for their invaluable support Only three geometries possible if the Universe is homogeneous and isotropic ("cosmological principle")

A homogeneous and isotropic Universe is described by the **Friedmann-Lemaitre equation(s)** from Einsteins field equation: $R_{\mu\nu} - 1/2 g_{\mu\nu} R (-\Lambda g_{\mu\nu}) = -8\pi T_{\mu\nu}$

$$(da/dt)^2 = H_0^2 [1 + \Omega_m (1/a - 1) + \Omega_\Lambda (a^2 - 1)]$$

Relative "size" $a(t) = R(t) / R_0 = (1+z)^{-1}$ vs. time t

 H_0 = today's Hubble constant; z = redshift = Δλ / λ_0 = 1/a(t) - 1 Ω_m = mass density; Ω_{Λ} = "cosmological constant"; Ω_m + Ω_{Λ} + Ω_k =1

Today (a = 1, t = T_U) : da/dt = + H_0

Future (t > T_U, a > 1) dominated by Ω_m for $\Omega_{\Lambda} = 0$ or by the sign (+-) of Ω_{Λ} for $\Omega_{\Lambda} \neq 0$

 \rightarrow Data for Ω_m , H₀, H (a < 1), lower and upper limit for T_u needed

"Standard model" of cosmology "valid" until 1998

1. "Critical" mass density: $\Omega_m = 1$

2. No cosmological constant: $\Omega_{\Lambda} = 0$

3. Euclidian (flat) Universe: $\Omega_{k} = 0$ (follows from "inflation")

→
$$(da/dt)^2 = H_0^2 \frac{1}{1/a} \rightarrow \int a^{1/2} da = H_0 \int dt$$

• \rightarrow Age of the universe: $T_U = 2/3 \cdot 1/H_0$

• for $H_0 = 72$ (7) km /s/ Mpc [1994] $\rightarrow T_U = 9$ (1) · 10⁹ yr

1. The new cosmology from 1998

Detection of "standard chandles" Supernovae la (Perlmutter, Leibundgut) at a redshift z = 0.5; since $z = 1/a - 1 \rightarrow a = 2/3$

Die Augen der Unendlichkeit

Keck I/II of Caltech on the Mauna Kea, Hawaii: Twin (10 meter) mirrors Very Large Telescope of ESO on the Cerro Paranál, Chile: Four connected 8.2 meter mirrors

Source: homepages ESO, CALTECH

Hubble constant H(a =2/3) smaller than expected by a factor of $\approx \sqrt{2}$

Perlmutter, Leibundgut 1998 Ap. J. **517** (1999) 565

→ There is an Ω_Λ≈ + 0.7
the Universe expands forever faster and faster, due to this puzzling
"cosmological constant" ("dark energy")

Source: Ap. J. **517** (1999) 569

3K CMB from decoupling of matter and radiation, 300 000 yr after BB Small-angle autocorrelation of 3K CMB (WMAP)

The inauguration of the new cosmology in 1998

Is the "new cosmology" already confirmed ?

- Are the old (- 4 · 10⁹ yr) Supernovae la calibrated chandles ?
- Is the absorption on the long way to us really understood ?
- Are there any other hints on an $\Omega_{\Lambda} > 0$, or "dark energy" ?

 \rightarrow Independent constraints for Ω_m , Ω_A , H(a) and T_u are mandatory

Henrietta Leavitt detects in 1908 new calibration chandels for large distances (many Megaparsec), the **ō Cepheids**: Pulsation period proportional to absolute luminosity

After 70 years of Hubble-war (Sandage vs.de Vaucouleurs) this problem is now solved by the "Hubble key project" (W.L. Freedman and coworkers 1994-2000)

Cepheid Variable Star in Galaxy M100 1994 HST-WFPC2

M100 in the Virgo cluster

From the period of the δ Cepheids \rightarrow distance = 15 Mpc

From the redshift → expansion velocity = 1080 km/s

 \rightarrow H₀ = 1080 km/s/15 Mpc

1/H₀ = 'age' T_U of the Universe
for constant expansion

 \rightarrow T_U = 13.5 \cdot 10⁹ yr

2. Stellar and nuclear cosmic clocks Globular cluster M13. old stars of the same age but with different masses

He turns them out in full strength and calls them all by name Jesaia 40, 26

'Hertzsprung-Russell-diagram' of all stars up to a distance of 300 parsec (975 light years) taken by Hipparcos (1995)

Absolute luminosity versus temperature

The stars are stationary on the 'Main Sequence' during the fusion of protons to helium

This time depends very sensitively on the mass of the individual stars

Source: homepage Hipparcos

Age of GC from 'kink' at Main Sequence

Stay on the Main Sequence: τ_{MS} = M/L ∞ M^{-2.5} τ_{GC}/τ_☉ = [M_☉/M_{GC}]^{2.5}

For our **Sun** this time is calculated as $T_{\alpha} = 9.4 \cdot 10^9 \text{ yr}$, for lighter stars longer, for heavier ones shorter:

T_{HR} = 9.4 · 10⁹ yr (m_☉/m)^{2,5}

Observing at which mass m_K the stars of M13 are leaving the main sequence

One can determine the age of M13 – and therewith a lower limit for the age T_o of our galaxy.

from m_{κ} = 1,04 m_{χ}

$$\rightarrow$$
 T_G > 8 Gyr

Lower limit of the age T_{G} of our galaxy $\approx 11.10^{9}$ yr

B. Charboyer, L.M. Krauss, Science 299 (2003) 65

Die gibt's seit über 12 Hilliarden Fahren....

The reliability of the (lower) limit of ~11 · 10⁹ yr for the age of our Milky Way galaxy depends on

How trustworthy is the chemical evolution model ? of stars and, in particular, of our Sun, and

How precisely can the mass at the "kink" be determined ? (distance problem of the HRD!)

→ Other chronometers are urgently needed with an independent "clockwork"

Nuclear cosmic 'clocks'

S.M. Carroll, W.H. Press

Ann. Rev. of Astron. and Astrophysics 30 (1992) 521:

"...it may be more secure [to use nuclear clocks instead of astronomical clocks], because the physics of nuclear decay is so much better understood

than that of stellar evolution "

1. Select a long-lived radioactive mother (m) / β-daughter (d) couple

2. Determine N(m), N(d) at time t

3. N(m) (t) = N(m) (t₀) exp[- Λ (t-t₀)] N(d) (t) = N(m) (t₀) [1 - exp[- Λ (t-t₀)]

 \rightarrow [N(d)/N(m)] (t) = exp[\land (t-t₀)] - 1

One has to measure 'only'

The relative amount at time t and the decay probability Λ of the mother ion

→ Nuclear cosmic clocks should be independent on stellar/galactic evolution models Only 4 nuclear clocks for the age of our galaxy / the Universe

Long half-life (many 10⁹ yr) \rightarrow small Q value and/or large ΔI^{π}

- 1. ${}^{87}\text{Rb}/{}^{87}\text{Sr}(\beta)$ $T_{1/2} = 50 \text{ Gyr}$ $Q_{\beta} = 273 \text{ keV}(3/2^{-} \rightarrow 9/2^{+})$ 2. ${}^{176}\text{Lu}/{}^{176}\text{Hf}(\beta)$ $T_{1/2} = 30 \text{ Gyr}$ $Q_{\beta} = 1186 \text{ keV}(7^{-} \rightarrow 0^{+})$
- 3. ¹⁸⁷Re/¹⁸⁷Os (β) T_{1/2} = 42 Gyr Q_{β} = 2.6 keV (5/2⁺ \rightarrow 1/2⁻)
- 4. ²³⁸U...²⁰⁶Pb (α, β) $T_{1/2}$ = 4.5 Gyr

4a. ²³²Th...²⁰⁸Pb (α , β) T_{1/2} = 14 Gyr

From measured mother/daughter abundance and known half-life → Age of the sample

Age of the solar system $T \odot = 4.6 \cdot 10^9$ yr; the "isochrones

GEMEINSCHAF

Constraints for the pre-solar age T_N of our galaxy

limits for the duration T_N of the nucleosynthesis

$$1/\lambda$$
 (daughter/mother) $\leq T_N \leq 2/\lambda$ (daughter/mother)

$$(1/\lambda_{Re} ({}^{187}\text{Os}/{}^{187}\text{Re})_{\odot}) \leq T_{N} \leq 2/\lambda_{Re} ({}^{187}\text{Os}/{}^{187}\text{Re})_{\odot}$$

if the nuclei A, B are *not* in a common decay chain (e.g. 238 U, 232 Th), their production probabilities P_A , P_B in the r-process must be known

→ Clayton (1964): a mother-daughter couple (¹⁸⁷Re/¹⁸⁷Os) is the 'best' radioactive clock

1. Measure R (187Os/187Re), and A(Re) The two extreme cases:* 1. all ¹⁸⁷Re (r-made) due to **one** Supernova $dN_{Re}(t)/dt = -\Lambda N_{Re}(t); dN_{OS}(t)/dt = \Lambda N_{Re}(t)$ 2. ¹⁸⁷Re due to **infinitely many** Supernovae $dN_{Re}(t)/dt = -\Lambda N_{Re}(t) + p; dN_{Os}(t)/dt = \Lambda N_{Re}(t)$ \rightarrow T_N \geq 1/ Λ · R(¹⁸⁷Os/¹⁸⁷Re)_d (1) $\rightarrow T_N \leq 2/\Lambda \cdot R(^{187}Os/^{187}Re)_d$ (2) 1/A = 61.3 Gyr, R(¹⁸⁷Os/¹⁸⁷Re)_d = 0.137 \rightarrow 8.4 \leq T_N \leq 16.8 [Gyr]

* E.M.D. Symbalisty et al., Rep.Prog.Phys. 44 (1981) 293

3. The ¹⁸⁷Re/¹⁸⁷Os nuclear cosmic clock

Bare (and H-like) ¹⁸⁷Re can undergo bound-state β decay (β_b) to the K shell and the first excited state at 10 keV of ¹⁸⁷Os⁷⁵⁺ (I^{III} = 3/2⁻)

Nuclear matrix element (log ft) not known

Measurement of the lifetime т of bare ¹⁸⁷Re provides log ft. Then the lifetime for all charge states q can be calculated reliably

Cooling

D. Boutin

First **direct** observation of β_b decay

How to determine a β_b lifetime τ at a Q value of 62 ke

- 1. Store and cool bare ¹⁸⁷Re for various times (hours)
- 2. The β_b daughters, H-like ¹⁸⁷Os, at the **same** atomic charge state are **not resolved** Q value only **62 keV**
- 3. After the (long) storage time strip the one electron of ¹⁸⁷Os in an intense gas jet, acting for two minutes only
- 4. The **bare** ¹⁸⁷Os ions are wellresolved now, at q = 76⁺
- 5. The number of nuclear reaction products (Hf, W,..) does not depend on storage time

F. Bosch et al., PRL 77 (1996) 5170

The abundance of ¹⁸⁷Re/¹⁸⁷Os depends on the galactic history

K. Takahashi, Tours Symposium on Nuclear Physics III, AIP 1998, p.616

$$T_G = (15 \pm 2) 10^9 a$$

einschl. des gegenwärtigen Fehlers von (187Os)s:

$$\rightarrow T_{\rm G} = (15 \pm 4)10^9 \text{ a}$$

Sorry! or -

Try, to figure out the galactic history of ¹⁸⁷Re/¹⁸⁷Os with the **known lifetimes τ(q) of ¹⁸⁷Re** for all charge states q*

\rightarrow T_G = 15(4) \cdot 10⁹ yr

* K. Takahashi, Tours Symp. on Nucl. Physics III, AIP 1998, 616

Six snap-shots from the galactic fate of a randomly chosen ¹⁸⁷Re

One has to model the history of ¹⁸⁷Re by a

stellar (galactic) evolution model.

This (and other) radioactive clock is not more independent from astronomical clocks

23

- 1. Produced in the outbreak of a Supernova
- After some 100 million years of free galactic self-determination, citizenship in a 9-solar-mass star near a C-burning shell.
- During some boring years in various charge states q; decaying some day to ¹⁸⁷Os by β_b
- 4. Re-born by free-electron-capture of ¹⁸⁷Os.
- 5. Surviving the outbreak of its home-star, but again in the interstellar space, waiting...
- 6. ..Awaking in a deep-lying rock on the earth; disturbed there by a curious physicist...
- → The one decay constant λ_{Re} has to be substituted by a < λ (q) >_{eff}, properly weighted over its galactic 'history'...

What's about the other nuclear cosmic clocks ?

⁸⁷Rb/⁸⁷Sr: Production ratio of ⁸⁷Rb in the s- and r-process not clear

> ¹⁷⁶Lu/¹⁷⁶Hf: Excited state at 127 keV, $T_{1/2} = 3.7$ h populated in s- process ($T_s \approx 30$ keV)

> > ²³⁸U/²³²Th:

Relative r- production probabilities not known

U/Th absorption lines from metal-poor stars of galactic halo

Conclusion

All 4 nuclear cosmic clocks depend on astronomical evolution models. There is **not** a single decay constant Λ; Λ rather depends on the charge state q and/or the temperature T.

 $T_{G} \ge 10.8 \cdot 10^9$ yr ('rescaled' Globular Clusters, Charboyer)

≥ 11.0.10⁹ yr ('recalibrated' ¹⁸⁷Re-clock, Takahashi)

 $T_G \ge 9.2 \cdot 10^9$ yr (U/Th lines from halo star, Cayrel)

 $< T_G > \ge 10.3 \cdot 10^9 \text{ yr} \rightarrow T_U \ge (10.3 + 0.7) = 11 \cdot 10^9 \text{ yr}$

-The nuclear clocks ¹⁸⁷Re/Os and ¹⁷⁶Lu/Hf may serve as very sensitive "thermometers"

Hubble Ultra Deep Field Hubble Space Telescope • Advanced Camera for Surveys

Today's lower limits for H_0 and T_U already in conflict to the Standard Model of cosmology

Standard model ($\Omega_m = 1, \Omega_\lambda = 0$): $T_U H_0 = 2/3 (652 [Gyr] \cdot [km/s/Mpc])$ 'Empty' universe: $T_U H_0 = 1$ (978) $H_0 = 72 (7) km/s/Mpc \ge 65$ W.L. Freedman et al., Nature 371(1994)757

 \rightarrow H₀ T_U \geq 65 \cdot 11 = 715

Herakleitos

4. The s-process nuclear cosmic clock ²⁰⁵Pb and the bound-state β decay of bare ²⁰⁵Tl (# E019 and # E100)

What happened between the decoupling of the Solar system from the galactic interstellar matter and its solidification ?

Physics case

²⁰⁵Pb is the **only purely s-process** short-lived (10⁷ y) radioactivity (**SLR**) alive in the early solar system

SLR provides insight on nucleosynthesis just prior to the Sun's birth

 $N(^{205}Pb)/N(^{204}Pb) = P(^{205}Pb)/(P^{204}Pb) \cdot T_{205}/T_{G}$ abundances in ISM s-production rates $2 \cdot 10^{7}/8 \cdot 10^{9}$ $\approx 10^{-3} \text{ (measured)}^{*} \approx 1 \text{ (assumed)} \approx 2 \cdot 10^{-3}$

*R.G.A. Baker et al., Earth Pl. Sc. **291** (2010) 39

²⁰⁵Pb strongly reduced by free EC from 2.3 keV state injection of s-matter needed from a star to get the ratio of 10⁻³ J J.B. Blake et al., Ap.J. 197 (1975) 615

Counter-balanced by β_b decay of highly ionized ²⁰⁵TI? K. Yokoi, A.+ A. **145** (1985) 339

λ_{βb} of bare ²⁰⁵TI provides the additional production rate of ²⁰⁵Pb in the s-environment. It "decides"
 whether or not an additional source of ²⁰⁵Pb (AGB star, Supernova) was acting at the onset of our Solar system.

Lifetime of **bare** (or H-like) ²⁰⁵TI ?

* K. Yokoi et al., Astron. + Astroph. 145 (1985) 339

1. Injection of bare ²⁰⁵TI from FRS 2. Accumulation in ESR to 5 · 10⁵ ions FRS 3. Storage for different times t 4. Parent- (bare ²⁰⁵Tl⁸¹⁺) and daughter (H-like ²⁰⁵Pb⁸¹⁺) line not separated in Schottky spectrum 5. Gas jet (Argon) turned-on for about 2 minutes K electron of ²⁰⁵Pb⁸¹⁺ stripped-off

6. Get bare ²⁰⁵Pb, well-resolved

²Same technique as applied for β_b decay of ¹⁶³Dy and ¹⁸⁷Re

The cosmos is like a child playing at dominoes...

Direct life-time determination of β_b decay

Projectile fragmentation

GEMEINSCI

stochastic + e⁻ cooling

Schottky analysis

Mother and daughter in the **same** spectrum

First **direct** observation of β_b decay

T. Ohtsubo et al., PRL 95, 052501 (2005)

Hubble Space Telescop key project: δ Cepheids in M100 (Virgo) W.L. Freedman 1994 (2000) \rightarrow H₀ = 72(7) km/s/Mpc

