Dynamics of Electron Capture in Slow Ion-Atom Collisions

Daniel Fischer

MPIK, Heidelberg, Germany

Motivation

Astrophysical Reactions

Charge-exchange reactions between HCIs and molecules are followed by X-ray emission

Motivation

• Energy balance and transport in plasmas (e.g. Fusion)

Storage time of highly charged ions in traps and storage rings

Motivation

Fundamental questions:

- Populated states
- Pathways of stabilization
- Dynamics of formation

femtosec. many-electron flux

- correlated?
- tunneling?
- control?

"over the barrier"

COLTRIMS / Reaction Microscopes

Fragmentation kinematically complete and in 3D

The EBIT Reaction Microscope

Projectiles: Charge q < 64 (e.g. Ar¹⁸⁺, Xe⁴⁴⁺, U⁶⁴⁺) energy ~ 10 keV/q (with HV platform up to 300 keV/q)

The EBIT Reaction Microscope

Kinematics

Kinematics

Sensitive test for theoretical cross sections

Single electron capture

Double electron capture

Double electron capture

Double electron capture

ADC decay channels

ADC decay channels

HITRAP: Towards higher charge states and lower collision-energies

• Dynamics of formation and relaxation

- Correlation in femtosec.
 many-electron flux
- Relaxation of highly charged quasi-molecules

People

D. Fischer D. Globig R. Hubele DRIU A. Kelkar Emmy A. LaForge Noether-Programm D. Misra Deutsche Forschungsgemeinschaft DFG M. Sell K. Schneider Xincheng Wang Yingli Xue (pres. Lanzhou)

S. Bernitt J. Crespo R. Ginzel K.-U. Kühnel **R. Moshammer** J. Ullrich

Conclusion I

- State selective, differential cross sections for single and double-electron capture
- coincident energy- (and momentum-) resolved information of electron emission (Auto-ionization)
- Insight in femtosecond transfer and stabilization mechanisms in slow collisions between HCIs and atoms in great detail

Towards lower collision energies and higher charge states

Low collision energies \rightarrow high probability for capture | =1 \rightarrow | – distribution prop. to 2| +1

High collision energies

Zerfallskanäle

