Towards surface experiments at HITRAP

Erwin Bodewits, H. Bekker, A.J. de Nijs, D.Winklehner, B.Daniel, G. Kowarik, K. Dobes, F. Aumayr and Ronnie Hoekstra

Introduction

>HITRAP - GSI

>Facility for slow highly charged ions

(kinetic energy ~keV, potential energy up to 1MeV!)

- Electron dynamics
- Metallic vs. insulating surfaces

Electron capture according to the classical over the barrier model

New IISIS set up

> First results on C_{60} /Au system

Artistic impression Hollow atom formation

All processes happen on a femtosecond scale

Some electronic processes

according to the classical over the barrier model

High q – (very) large distance when first capture occurs

IISIS: multi-user station for HITRAP

Inelastic Ion Surface Interactions Set-up

IISIS: electron statistics detection

 $P(k;\gamma) = \frac{\gamma^k e^{-\gamma}}{k!}$

IISIS: first electron yield data

12xq keV Xeq+ - Au

First data on C_{60} films on Au Changing the electronic structure

Film production (Omicron evaporator) in situ calibration evaporation on quartz microbalance comparison to 1ML C60 produced via "heating recipe"

Relative electron yield versus C60 coverage

Insulator versus metal

lλ

capture distance – states/time

resonant ionization

secondary electrons escape depth conclusions

IISIS

Inelastic Ion Surface Interactions Set-up

electron statistics detection at low energy first tests on C60/Au succesfull

remaining issues:

Further characterization of the film/surfaces

full scale simulations at low energy

(inc. angle, position of beam,...)

incorporation of X-ray detection

Thank you for you attention!

densities of states

Experiments at HITRAP

first generation of experiments

Not yet optimal HITRAP beams

No hard constraints on beam energies

THIN FILMS: bridges between metals and insulators

Surface lithography

electron statistics

microscopy

(in collaboration with Aumayr et al (Vienna))

simultaneously look for X ray spectra

(in collaboration with Stöhlker et al (GSI))

Some electron capture processes

according to the classical over the barrier model

distance of first electron capture:

First data on C60 films on Au

Film production (Omicron evaporator) in situ calibration evaporation on quartz microbalance comparison to 1ML C60 produced via "heating recipe"

kinetic electron emission: $\gamma = \gamma_0 + \gamma_{\theta} \cos^{-1} \theta$

potential electron emission:

 $\gamma = \gamma_0 + \gamma_\theta \text{COS}^{-0.5} \theta$