

All-optical Laser Cooling and Beam Diagnostics for Relativistic C³⁺ Ion Beams at ESR.

<u>Michael Bussmann</u>¹, F. Kroll¹, M. Löser¹, F. Röser¹, M. Siebold¹,
U. Schramm¹, W. Wen^{1,2,6}, D.F.A Winters^{2,3}, Th. Walther⁴,
T. Beck⁴, B. Rein⁴, G. Birkl⁴, J. Kruse⁴, W. Nörtershäuser^{2,5},
T. Kühl², C. Novotny^{2,5}, C. Kozhuharov², C. Geppert^{2,5},
M. Steck², C. Dimopoulou², X. Ma⁶, and Th. Stöhlker^{2,3}
1:FZD 2:GSI 3:Uni Heidelberg 4:TU Darmstadt 5:Uni Mainz 6: IMPCAS

Michael Bussmann • Laser Particle Acceleration Group • FZD • Mitglied der Leibniz-Gemeinschaft

Experimental Setup (2004/2006)

UV Laser Beam lons **BPM** Experimental Storage Ring at GSI **Photomultiplier Electron** cooler $\lambda_{\text{rest}} = \lambda_{\text{laser}} / \gamma (1+\beta)$ Laser Schottky

Ion Species: C³⁺ E_{beam} = 122 MeV/u = 1.47 GeV (β = 0.47, γ = 1.13) f_{rev} = 1.295 MHz $\tau_{\rm beam} \sim 450 \, {\rm s}, 270 \, {\rm s}$ (no cooling) Ar⁺ ion laser (cw) SHG $\lambda_{laser} = 257.34 \text{ nm}$

 $\begin{array}{l} \mathbf{2S}_{1/2} \rightarrow \mathbf{2P}_{1/2} \\ \lambda_{rest} = \mathbf{155.07} \ nm \\ \tau_{rest} = \mathbf{3.8} \ ns \end{array}$

Bunching to counteract Laser Force

Motivation

Most promising cooling method at high energies

Can reach strong coupling at ESR

Accelerator diagnostics limited in resolution

Fluorescence detection important but difficult

Many Ion Species can be Cooled @ FAIR

Ultralow Momentum Spread & Strong Coupling

- ♦ pure laser cooling
- laser cooling +
 electron cooling (1 mA)

Dashed lines:

~ N^{1/6} (IBS)

Solid lines:

~ N^{1/3} (space charge)

10 x smaller Momentum Spread

Strong Coupling observed (Needed for Crystallization)

7

New Experiment @ ESR

Experimental Improvements for Proposed Beamtime

New Laser Systems (Scanning + Pulsed)

CW Laser System

External Cavity Diode Laser

Cavities

26 GHz IR @ 100 Hz (we need ~ 3 GHz)

to Amplifier

Diode Laser + Grating

Fibre Amplifier

8.4 W @ 1028 nm 2x SHG to 257 nm (we need < 100 mW @ 257 nm)

Tobias Beck et al.

A new laser system for ion beam cooling at the ESR

Poster Session!

Pulsed Laser System

Master Oscillator + Power Amplifier (MOPA)

Active Thin Disk Mirror

50 ps, 50 μJ pulses in bursts (tunable, typical 40 MHz in 0.1 ms) 1 % duty cycle (rep rate 100 Hz), < 10 W output @ 1028 nm (Yb:YAG) central frequency after quadrupling (2 x SHG): 256 – 259 nm

Mathias Siebold et al.

50ps-source for laser cooling

Poster Session!

VUV Detection System

VUV Optical Detectors

Optical detection may give new results ...

Local change in beam energy via a fast drift tube voltage scan

VUV Detectors – Photomultiplier Tube + CaF2 Viewports

Z

VUV Detectors – CsI-coated Channeltrons

Absolute detection efficiency vs wavelength.

Improved ESR Diagnostics

Beam Profile Monitor: Radial Temperature

Data Acquisition and Control System

Wen Weiqiang et al.

Data-Acquisition and Control-System for Laser Cooling of Relativistic Ion Beams

Poster Session!

Applications

Precision Laser X-Ray Spectroscopy at FAIR

Scanning cw Laser System (~ 100 GHz UV / 10 ms)

Pulsed Laser System (50 ps, 50 µJ, 40 MHz burst)

Dynamical Phase-Space Evolution @ 10 ms

New VUV Detection System (2 PMT + Channeltron)