Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

GSI, Darmstadt	 F. Bosch, D. Boutin, C. Dimopoulou, B. Franzke, A. Gumberidze, M. Heil, HJ. Kluge, C. Kozhuharov, Yu.A. Litvinov, R. Märtin, P. H. Mokler, F. Nolden, R. Reuschl, H. Simon, U. Spillmann, M. Steck, Th. Stöhlker, G. Weber, D. Winters
JLU, Giessen	D. Bernhardt, S. Böhm, C. Böhme, J. Jacobi, S. Kieslich, H. Knopp, A. Müller, W. Scheid, S. Schippers
University of Oulo	S. Fritzsche
Uni Mainz	M. Lochmann, W. Nörthershäuser
LLNL Livermore	L.A. Bernstein, D. Schneider, M. Wiedeking
JKU, Kielce	D. Banas
INP, Krakau	Z. Stachura
MPI-K, Heidelberg St.Petersburg	A. Wolf, Z. Harman, U.D. Jentschura, A. Pálffy, CH. Keitel
State University	Y.S. Kozhedub, V.M. Shabaev, I.I. Tupitsyn
QUB, Belfast	F.J. Currell, B.E. O'Rourke
TU Munich	R. Krücken

within the SPARC collaboration (www.gsi.de/sparc) SPARC: Stored Particles Atomic Research Collaboration

Outline

The Nucleus as Seen Through the Eyes of an Atomic Physicist

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Nucleus as a Nuisance:Nuclear Size Contribution in Precision Experiments
(Here: $2s_{1/2} - 2p_{1/2}$ Splitting in Li-like Ions)

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Nucleus as a Benefit: Isotopic Fine Tuning of the 2 ³P₀ – 2 ¹S₀ Energy Splitting (Enhancing Parity Violation Effects in Heavy He-like Ions)

e.g.: A. Schäfer et al., PRA 40 (1989) 7362; M. Maul et al., PRA 53 (1996) 3915

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

The Tool -- Dielectronic Recombination: "Inverse" Auger Spectroscopy

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Experimental Storage Ring (ESR)

Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

DR Investigations of Nuclear Properties

Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

Low-Energy PR Spectrum of Li-like Neodymium (¹⁵⁰Nd⁵⁷⁺)

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Li-like ¹⁴²Nd⁵⁷⁺ vs. ¹⁵⁰Nd⁵⁷⁺

C. Brandau, et al., PRL 100 (2008) 073201

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Li-like ¹⁴²Nd⁵⁷⁺ vs. ¹⁵⁰Nd⁵⁷⁺

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

^ANd⁵⁷⁺ DR-IS and Change in Mean Square Radius

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

DR Investigations of Nuclear Properties

Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

How Far Can We Go (Present ESR) ?

high sensitivity of DR (~10⁴ stored ions): all isotopes > 60s

C. Brandau, et al., Hyperfine Interactions 196 (2010) 115-127

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Production of Li-like (!) Exotic lons

 1×10^{9} ²³⁸U ions @ 370 MeV/u in SIS U Be-target (1 cm "stripping foil" = 1850 mg/cm²) U 3.5×10^{5} Li-like ²³⁷U⁸⁹⁺ @ ~169 MeV/u (total ²³⁷U^{q+}: 2 × 10⁶)

complexities :

+ production of an isotope cocktail => separation w/o FRS (?)
+ energy loss and straggling in thick target
+ cooling times ~ 1-5 min (for hot fragments far off β_{Cool}?)
=> beam loss due to recombination in cooler (~95 % after 5 min)

²³⁸U ions @ 370 MeV/u in SIS \Rightarrow 1cm Be-target (1850 mg/cm²)

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Preparation of Li-like Exotic Beams in the ESR

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

²³⁷U⁸⁹⁺ - DR

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Isotope Shift and Hyperfine Effects in the Dielectronic Recombination of In-Flight Synthesized ^AU⁸⁹⁺ (A=236, 237, 238) (First Preliminary Results of the Oct 2009 Beamtime)

DR of ^AU⁸⁹⁺ "0th" analysis 6.0 (very preliminary) A = 238 rate coefficient [arb. units] A = 237 ($\delta \langle r^2 \rangle$ + HFS) 5.0 $A = 236 (\delta \langle r^2 \rangle)$ 4.0 3.0 2.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 electron-ion collision energy (c.m.) [eV]

DR Investigations of Nuclear Properties

Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

DR of Nuclear Metastable States (Isomers)

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Isomers in ²³⁴Pa⁸⁸⁺

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Summary and Outlook

- DR method for isotope shift of few-electron ions established
- Li-like vs. Be-like: switching the sign of the HFS contribution
- Intense radioisotope beams for AP studies (in parallel to FRS)
- Successful DR experiment with ^AU⁸⁹⁺ radioisotope beams
- Future improvements:

 optimize radioisotope yield
 normalization at low intensities
- Isomers: running proposal 3 days test beamtime acknowledged (full proposal soon)

JOURNAL OF PHYSICS: CONFERENCE SERIES

The open-access journal for conferences

XXVI International Conference on Photonic, Electronic and Atomic Collisions

Kalamazoo, Michigan, USA 22–28 July 2009

Editors: Ann E Orel, Anthony F Starace, Dragan Nikolić, Nora Berrah, Thomas W Gorczyca, Emanuel Y Kamber and John A Tanis

Volume 194 2009

jpcs.iop.org

IOP Publishing

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Thank you for your attention !

Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

Job Shift Measurements by Means of DR "Accessing Nuclear Properties with Large Atomic Cross Sections"

- novel method with large FAIR potential
- very effiicient approach to $\delta \langle r^2 \rangle$, I, μ_i and T_{1/2}
- radioisotopes / isomers
- isotopically pure (or cocktail) beam, single charge state

few-electron system (<u>Li-like</u>, …):
 ⇒ reliable theoretical description (full QED !)
 ⇒ negligible specific mass shift

• whole pattern of well-resolved resonance structures \Rightarrow Li-like (2 excitations) : 2s \rightarrow 2p_{1/2}, 2s \rightarrow 2p_{3/2}

• nuclear size ~ $Z^{5...6}$; HFS ~ $Z^4 \Rightarrow$ well suited for heavy systems (Z>50)

Outlook

- production run on IS / HFS with in-flight produced uranium isotopes (sept. 2009)
- isomers / lifetimes ?
- are more exotic processes (e.g. NEEC) feasible ??
- DR @ FAIR (within SPARC)
 ⇒ a dedicated ,ultracold' electron target

So Many Nice Resonant Features How to Get the Energy Shift ?

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Derivatives of the DR Spectra for the $^{A}Nd^{56+}(1s_{2} 2s_{1/2} 18 I_{i})$ Group

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Non-comprehensive List of $\delta \langle r^2 \rangle$ Values for the Isotope Pair ¹⁴²Nd - ¹⁵⁰Nd

about 20 publications (optical, muonic, K_{α} x-ray, e-scattering), a few examples :

Method	$\delta\langle$ r ² \rangle	
"combined" analysis: muonic atoms: e-scattering, high energy: e-scattering, low energy: e-scattering, reanalysed: e-scattering, low energy (II): optical IS optical IS optical IS ($\lambda \rightarrow \delta \langle r^2 \rangle$) optical IS ($\lambda \rightarrow \delta \langle r^2 \rangle$) optical IS ($\lambda \rightarrow \delta \langle r^2 \rangle$) $K_{\alpha} x-ray (\lambda \rightarrow \delta \langle r^2 \rangle)$ $K_{\alpha} x-ray (\lambda \rightarrow \delta \langle r^2 \rangle)$	1.291 fm ² [1] 1.324 fm ² [2] 1.345 fm ² [3] -0.569 fm ² [4] 0.765 fm ² [5] 0.220 fm ² [6] 1.205 fm ² [7] 1.259 fm ² [8] 1.220 fm ² [9] 1.205 fm ² [10] 1.259 fm ² [11] 1.353 fm ² [12] 1.36(1)(3) fm ²	 [1] I. Angeli, ADNDT 87 (2004) 185 [2] G. Fricke, et al., ADNDT 60 (1995) 177 [3] N.P. Heisenberg, et al., NPA 164 (1971) 340 [4] D.W. Madsen, et al., NPA 169 (1971) 97 [5] L.S. Cardman, et al., NPA 216 (1973) 285 [6] R. Maas, et al., Phys. Lett. B 48 (1974) 212 [7] E. W. Otten, Treat on Heavy-ion Sci., Vol.8 [8] M. Wakasugi, et al., J Phys. Soc. Jap, 59 (1990) 2700 [9] W.H. King et al., Z Phys 265 (1973) 207 [10] M. Hongliang, et al., PRA 44 (1991) 1843 / J Phys B, 30 (1997) 3355 [11] S.K. Battacherjee, et al., PR 188 (1969) 188 P.L. Lee and F. Boehm, PRC 8 (1973) 819 [12] O.I. Sumbaev, et al., Sov. J. Nucl. Phys. 5 (1967) 387

Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

Systematic Errors

Study of Systematic Errors (Re-Run of Analysis under the **Assumption of Alternative Input Parameters):** $(2p_{1/2} \text{ only})$ ion energy: ~0.1 meV misalignment (0.2 mrad) <0.1 meV Normalization/RR & BG subtraction): ~0.4 meV DT voltage calibration ~0.1 meV number of points for S/G: ~0.4 meV 0.6 meV Total: additionally for radius determination: Nuclear Polarization (130 keV 2+ state in A=150) ~0.3 meV

Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

Non-comprehensive List of $\delta \langle r^2 \rangle$ Values for the Isotope Pair ¹⁴²Nd - ¹⁵⁰Nd

about 20 publications (optical, muonic, K_{α} x-ray, e-scattering), a few examples :

Method	$\delta\langle$ r ² \rangle	
"combined" analysis: muonic atoms: e-scattering, high energy: e-scattering, low energy: e-scattering, reanalysed: e-scattering, low energy (II): optical IS optical IS optical IS $(\lambda \rightarrow \delta \langle r^2 \rangle)$ optical IS $(\lambda \rightarrow \delta \langle r^2 \rangle)$ $K_{\alpha} x$ -ray $(\lambda \rightarrow \delta \langle r^2 \rangle)$	1.291 fm² [1] 1.324 fm ² [2] 1.345 fm ² [3] -0.569 fm ² [3] 0.765 fm ² [5] 0.220 fm ² [6] 1.205 fm ² [7] 1.259 fm ² [8] 1.220 fm ² [9] 1.205 fm ² [10] 1.259 fm ² [11] 1.353 fm ² [12]	 [1] I. Angeli, ADNDT 87 (2004) 185 [2] G. Fricke, et al., ADNDT 60 (1995) 177 [3] N.P. Heisenberg, et al., NPA 164 (1971) 340 [4] D.W. Madsen, et al., NPA 169 (1971) 97 [5] L.S. Cardman, et al., NPA 216 (1973) 285 [6] R. Maas, et al., Phys. Lett. B 48 (1974) 212 [7] E. W. Otten, Treat on Heavy-ion Sci., Vol.8 [8] M. Wakasugi, et al., J Phys. Soc. Jap, 59 (1990) 2700 [9] W.H. King et al., Z Phys 265 (1973) 207 [10] M. Hongliang, et al., PRA 44 (1991) 1843 / J Phys B, 30 (1997) 3355 [11] S.K. Battacherjee, et al., PR 188 (1969) 188 P.L. Lee and F. Boehm, PRC 8 (1973) 819 [12] O.I. Sumbaev, et al., Sov. J. Nucl. Phys. 5 (1967) 387

Energy Resolution in DR Experiments ESR / TSR and NESR

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Experimental Response Function and Resolution

experimental resolution is mainly determined by the velocity spread of the cooler/target electron beam.

=> 2-parameter Maxwell-Boltzmann distribution (kT₁ >> kT₁)

kT⊥:

energy independent asym. broadening on low energy side

kT_∥: energy dependent symmetric broadening

Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

Strong Low-Lying DR Resonances of Li-like and Be-like lons

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Resonance Reaction Spectroscopy (GSI Electron Cooler as a Target)

Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

Contributions of the Nuclear Charge Radius to the 2s -2p_{1/2} Energy Splitting (Total Values and Uncertainties)

2s-2p_{1/2} energy splitting (QED) in 3 electron systems (Li-like): experimental error vs. theoretical uncertainty (QED)

	¹⁹⁷ Au ⁷⁶⁺	²⁰⁸ Pb ⁷⁹⁺	238U89+		
	216.167 (29)(67) eV	230.650 (30)(51) eV	280.516 <mark>(34)(65)</mark> eV [1]		
Yerokhin et al., (2001)	216.170(130)(110) eV	230.680(60)(130) eV	280.640(110)(200) eV		
Fin. nucl.	-7.680 <mark>(120)</mark> eV ^a	-10.670 <mark>(20)</mark> eV	-33.350 (70) eV		
\langle r ² \rangle ^{1/2}	5.437 fm	5.504(4) fm	5.860(2) fm		
example ${}^{238}U^{89+}$: $\langle r^2 \rangle^{1/2} = 5.8604(23)$ fm (muonic atoms) [2] uncertainty of 0.0023 fm => $\Delta E = 0.020$ eV					
but: $\langle r^2 \rangle^{1/2} = 5.8507(74)$ fm (combined analysis) [3] => $\delta E(Fin.Nucl.) \approx 0.085$ eV and $\Delta E(Fin.Nucl.) \approx 0.06$ eV					
[1] C. Brandau [2] J.D. Zumbro	et al.,PRL 91 (2003)073202 [o et al.,PRL 53 (1984)1888	[3] I. Angeli, ADNDT 87(200 [4] P. Beiersdorfer et al., PF	04)187 RL 95 (2005)233003		

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Low Energy – DR ($\Delta n = 0$)

• at least 3 e- (Li-like)

- intra-shell transitions ($\Delta n = 0$) $2s_{1/2} \rightarrow 2p_{1/2}$ and $2s_{1/2} \rightarrow 2p_{3/2}$
- capture to high-Rydberg states (Rydberg series)
- partial (or near) cancellation of excitation and binding energy => E_{kin} very low / low
 - => high precision measurements with very high resolution

Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

²³⁸U ions @ 370 MeV/u in SIS \Rightarrow 1cm Be-target (1850 mg/cm²)

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Injection of an Isotope Cocktail into the ESR

> Carsten Brandau EMMI Workshop, Eisenach, 28/06/09

Nucleus Altering Atomic Transition Rates: Hyperfine-Quenching in Atomic Metastable Ions (here: Zn-like Pt⁴⁸⁺)

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Lifetime Measurements Using DR: Hyperfine-Induced Transitions of Metastable States

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR

Lifetime Measurements Using DR: Hyperfine Quenching of Atomic Metastable States (Be-like ^ATi¹⁸+ at the Storage Ring TSR)

Resonant Photo-Recombination of Highly-Charged Radioisotopes at the ESR